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Magnetic braking: Simple theory and experiment

H. D. Wiederick, N. Gauthier, D. A. Campbell, and P. Rochon
Department of Physics, Royal Military College, Kingston, Ontario, K7K 5L0, Canada

(Received 20 December 1985; accepted for publication 3 July 1986)

A simple theory of magnetic braking in a thin metal strip is proposed. The predictions of the
model are compared to experiment and good agreement is obtained. The experimental tests were
conducted by spinning a thin aluminum disk of large radius between the pole pieces of an
electromagnet. A field range of 0 to 150 mT was used.

I. INTRODUCTION

When a piece of metal is placed in a time-dependent mag-
netic field B(r,t), an electric field is induced and circulat-
ing reaction currents, called eddy currents, are generated in
the metal. This phenomenon may be explained by Far-
aday’s law of electromagnetic induction. The reaction cur-
rents dissipate energy in the metal, in the form of heat
(Joule effect). Similarly, when a piece of metal is forced to
move in a nonuniform but stationary magnetic field B (r),
there is an induction of reaction currents and energy is
dissipated in the metal. This phenomenon may be ex-
plained by the Lorentz force law. Because energy is being
dissipated, a magnetic drag force is induced so as to slow
down the motion of the sample. The purpose of the present
paper is to study the nature and origin of this drag force.

Magnetic braking forms the basis of a growing technolo-
gy and devices based on the effect have been proposed and
used to damp unwanted nutations in satellites””> and to
eliminate vibrations in spacecrafts.* Some brake dynamo-
meters* also operate on the eddy current braking concept.
Reference to magnetic braking is occasionally made in
textbooks®™ but the approach is then maintained at the
qualitative level only. Most textbook authors avoid men-
tioning the effect®® although some authors'®!! propose it
as a problem but the book by Smythe'? gives a comprehen-
sive analytic treatment of some cases. We have been unable
to locate a single note or paper about magnetic braking in
this Journal.

To calculate the magnetic drag force on a moving metal
object is generally difficult and implies solving Maxwell’s
equations in a time-dependent situation. This may be one of
the reasons why the phenomenon of magnetic braking, al-
though conceptually simple to understand, has not attract-
ed the attention of textbook authors or pedagogs. A simple
approximate treatment is however possible in some special
cases, and the purpose of the present note is to present such
atreatment for the case of a long wide strip which is moving
in the air gap between the rectangular-shaped pole pieces of
an electromagnet. As will be shown, the present problem
may be solved approximately by considering the electrical
analog of a battery, of electromotive force € and internal
resistance r, connected in series to an external resistive load
of resistance R. These concepts are well understood by the
early undergraduate and thus make a quantitative presen-
tation of magnetic braking feasible at that stage. We have
been unable to locate a model similar to ours in the litera-
ture.

To obtain the magnetic drag force, we first calculate the
total current J which is induced in the metal strip by the
applied field. To do so, we first assume that the speed of the
strip is sufficiently small that the magnetic field generated
by the induced current 7 is negligible in comparison with
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the applied field B,. This will occur if the strip speed is
much smaller than some characteristic eddy-current-relat-
ed speed v, for the metal composing the strip. Intuitively,
one can appreciate that v, will contain the conductivity of
the metal o, the thickness of the strip §, and the permeabil-
ity po, all in SI units. Indeed, it will be easier to induce
strong reaction fields if the conductivity is high. Similarly,
it will be easier to induce a strong reaction if the plate is
thicker since there is then more volume available for damp-
ing. Finally, u, should enter because it appears in Ampeére’s
law for magnetic currents. We estimate v, by writing it in
the form o’5™u”, with I, m, n exponents to be determined
by dimensional analysis. [ The basic units of the appropri-
ate quantities are (1) A V™'m™' for o, from Ohm’s law;
(2) m for &; (3) Vs A~"m™~" for p,, from the voltage—
current law for induction.] We then find v, =~ 1/(ouyd); a
rigorous calculation gives v, = 2/(ouyd).

Under the conditions just stated, the magnetic drag force
is seen to arise from a mutual coupling between the induced
current / and the applied field B, in the “‘shadow region™ of
the pole pieces. The calculation is outlined in Sec. II of this
paper. Section I1I gives an experimental proof of our mod-
el. As will be seen, agreement between theory and experi-
ment is good.

I1. MAGNETIC BRAKING OF A LONG WIDE
METAL STRIP

To understand magnetic braking simply, consider a thin
metal strip of thickness §, which is moving at constant ve-
locity v = jv in the p direction of the xy plane, in the air gap
between the rectangular pole pieces of an electromagnet.
The cross-sectional width of each pole piece is w and its
length is /, as illustrated in a view from above the plate, in
Fig. 1; the electromagnet produces a field which is perpen-
dicular to the strip. It is assumed that the north and south
pole faces of the electromagnet are very close together so
that the field is essentially uniform,’ of value £ B,, in the
shaded area — w/2<x<w/2, —I/2<y<! /2 of Fig. 1, and
of negligible magnitude outside that zone. To avoid having
to consider the effects due to the edges of the metal strip on
the distribution of currents in the strip, we assume that the
latter is very wide compared to the width w of the magnet
pole piece.

In the absence of other forces, the strip would move free-
ly between the pole pieces when there is no current through
the electromagnet. However, when a current is flowing
through the electromagnet, a magnetic field & B, is created
in the shaded region and magnetic braking occurs. From
Ohm’s law and the Lorentz force law, we may write that

J=0(E+vXB), (N
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Fig. 1. Location of magnet pole piece for the moving strip case. The strip
slides in the thin air gap between the pole pieces in a horizontal plane.

where J is the induced current density, E is the induced
electric field, and B is the net magnetic field. If we assume
that the cross-sectional length of the pole pieces is much
larger than their cross-sectional width, />w, then we ex-
pect that J will essentially be uniform, of value /(1 /5/),
except near the ends but these deviations may be neglected
overall; here, I is the net current flowing in the shaded
region of the metal strip. The induced field is then of the
form E = — i(V /w), where V is the voltage drop across
the width win the “shadow” region. Finally, we neglect the
induced part of B, as already discussed, and easily obtain
the relationship

V=¢€-—rl, 2)
where

€ =vByw (3)
and

r=w/(old) (4)

by definition. Equation (4) gives the resistance to current
flow of the shadow region and so Eq. (2) may be interpret-
ed as giving the circuit-equivalent of our problem, since Eq.
(2) describes the voltage across the terminals of a battery
of e.m.f. € and internal resistance ». As a result, if we denote
the external resistance of the strip (i.e., strip less metal
contained in shadow region) by R, then ¥ = RI and we can
solve for the induced current I:

I = aoBylbv, (3)
with
a=(1+R/r" (6)

The parameter a is a dimensionless quantity which may be
found if the external resistance R is known. The calculation
of R is generally complicated and we do not elaborate on it
here since one can readily measure this parameter in the
laboratory, by first carving out an area / X w from a large
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plate. We have carried out a detailed calculation of R using
conformal transformation techniques but an outline is in-
appropriate in the present context. (We will, however, sup-
ply all the details of the method upon request, by writing to
the second author of this paper.)

The drag force is easily found to be

F= JJXBOdr

=}'(aal§wB§v) N

in the present circumstances; it varies linearly with the ve-
locity of the strip and quadratically with the applied field.

II1. EXPERIMENTAL RESULTS

Equation (7) has been tested experimentally by spinning
a thin aluminum disk of large radius on an air cushion. This
system will produce results which are almost identical to
those of a long wide strip if the magnet is positioned suffi-
ciently far from the center of rotation that the velocity of
the disk under the pole pieces is practically uniform. The
outer edge of the disk is also assumed to be sufficiently far
from the field (shaded area) to warrant neglecting its influ-
ence on the induced current pattern. Under these condi-
tions, which are easily achieved experimentally, we can
view the spinning disk braking problem as being equivalent
to that of braking a long wide strip.

Magnetic braking was measured in a 435-mm-diam alu-
minum disk which was free to rotate in a 7-mm gap
between the rectangular pole pieces of an electromagnet.
The thickness of the disk was § = 1.17 mm, and the electri-
cal resistivity p = 1/0 was found to be 4.02X 1078 Qm,
using the four-terminal method described by van der
Pauw."® The cross-sectional area of the rectangular pole
pieces measured 57 mm X 29 mm; the position of the pole
pieces with respect to the spinning disk is shown in Fig. 2.

The aluminum disk was coaxially attached to a horizon-
tal 125-mm-diam aluminum plate which formed the rotat-

Fig. 2. Location of the magnet pole piece. The disk rotates in the air gap, in
a horizontal plane.
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Fig. 3. Semilogarithmic plot of the angular frequency as a function of
time. The slope of this graph is — 0.18/T%s and the magnetic field is
B=69mT.

ing element of a Pasco Scientific air bearing. This bearing is
designed to support both radial and downward loads. The
moment of inertia of the rotating assembly, consisting of
the aluminum disk and the air bearing plate, was calculated
tobe 1.18 X 1072 kg? ( + 1%). The air bearing plate has a
strip of equally spaced optical bars on its circumference,
and a photorefiective optical reader was used to detect the
motion of the bars past the reader.

The output of the optical reader was fed to the game port
of an Apple II" computer which was programmed to mea-
sure the average frequency of the optical reader signal over
successive 10-cycle intervals, and to determine the accu-
mulated time at each of these measurements. About 20
such measurements were obtained during each revolution
of the disk. The data was then converted to give the natural
logarithm of the angular speed w(#) of the spinning disk as
a function of time. A typical decay curve is shown in Fig. 3.
Spinning speeds were always much smaller than the skin-
effect-related characteristic speed v, introduced at the end
of Sec. I. [Such effects appear at speeds of order 2/
(ope8) =55 m s~ ! in the case of aluminum; typical spin-
ning speeds at the magnet location were 1 to 2 ms™ ' in our
experimental situation. ]

According to the results of rotational dynamics, we have

KL -1+ T, (8)
where Iy is the residual (B, = 0) air-drag torque, I is the
magnetic torque, K is the moment of inertia (disk plus
bearing), and dw/dt is the time rate of change of the angu-
lar velocity @. The air drag is assumed to be linear (of
viscous type) in the angular velocity; similarly, by setting
v=wL in Eq. (7), the magnetic drag is seen to be linear
also. Here, L is the distance between the axis of rotation
and the center of the rectangular region where the applied
magnetic field penetrates the disk. Equation (8) is readily
integrated and the result is

o(t) =we """, 9
where

1 1 2

— =4 mB3, (10)

T T

with the parameter 1/7, is associated with air damping
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Fig. 4. Plot of the inverse time constant as a function of the square of the
magnetic field.

alone. According to the results of the previous section, the
parameter m is '

m=o6lwL?*/(1 + R /rK. (1D

A least-squares fit analysis of the data reported in Fig. 3
gives an inverse time constant 7~ ' = 0.1823 s !, with an
uncertainty of 0.0004 s~ (correlation coefficient: 0.9999),
for an applied magnetic field of 69 mT. Measurements of
the inverse time constant were performed for different
magnetic fields, in the range 10 mT<B,<150 mT. The re-
sults shown in Fig. 3 are typical of all the measurements
taken. The time dependence of the angular speed is very
well described by an exponential behavior in time in all
cases. In our arrangement, L = 162.5 mm.

Figure 4 shows a plot of the measured inverse time con-
stants as a function of the square of the applied magnetic
field intensity. The extrapolated intercept is 75 ' = 0.01
s~ !; this result agrees well with the inverse time constant
measured directly, without magnetic braking. The mea-
sured slope is m = 38.5 T~ 2 s, with a least-squares un-
certainty of 4+ 0.5 T~2 s~ . For magnet parameters / = 57
mm and w = 29 mm, our conformal evaluation of R gives
0.87/06. The slope calculated with the help of Eq. (11) is
then 39.7 T~2s~'. We have not been able to determine
with a high degree of confidence if our neglect of the fring-
ing currents in the shadow region caused a decrease or an
increase in the calculated value of m, and by how much. On
the face of the above results however, agreement between
theory and experiment is reasonable.

1V. CONCLUSION

We have presented a very simple model of magnetic
braking. The model contains all the important physical fea-
tures of this phenomenon and it is easily presented at an
early level as an illustration of the importance of the Lor-
entz force law. Our second year undergraduates have been
very enthusiastic about the experiment and we believe that
the approach can be useful to others as well.

As already stated, the present approach does not permit
to decide conclusively what effect the neglect of fringing
has on the resistance ratio R /r. A better model is needed in
this respect.
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Some common errors exhibited by students in interpreting graphs in physics are illustrated by
examples from kinematics. These are taken from the results of a descriptive study extending over a
period of several years and involving several hundred university students who were enrolled in a
laboratory-based preparatory physics course. Subsequent testing indicated that the graphing
errors made by this group of students are not idiosyncratic, but are found in different populations
and across different levels of sophistication. This paper examines two categories of difficulty
identified in the investigation: difficulty in connecting graphs to physical concepts and difficulty
in connecting graphs to the real world. Specific difficulties in each category are discussed in terms
of student performance on written problems and laboratory experiments. A few of the
instructional strategies that have been designed to address some of these difficulties are described.

L. INTRODUCTION

Many undergraduates taking introductory physics seem
to lack the ability to use graphs either for imparting or
extracting information. As part of our research on student
understanding in physics, the Physics Education Group at
the University of Washington has examined some of the
graphing errors made by students. Part of the motivation
for undertaking this study has been a conviction that facili-
ty in drawing and interpreting graphs is of critical impor-
tance for developing an understanding of many topics in
physics. We have been especially interested in exploring
whether some of the difficulties with the kinematical con-
cepts that we identified in an earlier study might be effec-
tively addressed through an increased emphasis on graphi-
cal representations. '

The problems students have with graphing cannot be
simply attributed to inadequate preparation in mathemat-
ics. Frequently students who have no trouble plotting
points and computing slopes cannot apply what they have
learned about graphs from their study of mathematics to
physics. Therefore there must be other factors, distinct
from mathematical background, that are responsible. The
analysis of graphing errors identified in this study indicates
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that many are a direct consequence of an inability to make
connections between a graphical representation and the
subject matter it represents. In this paper, we describe two
categories of student difficulty that we have investigated:
difficulty in connecting graphs to physical concepts and
difficulty in connecting graphs to the real world. Specific
difficulties in each category are identified and discussed in
terms of student performance on written problems and lab-
oratory experiments. All of the examples used as illustra-
tions are from kinematics, although our study also includ-
ed other topics in physics and physical science.

Most of the work reported here was carried out over a
period of several years in the context of a year-long pre-
paratory physics course for undergraduates intending to
enroll in either algebra- or calculus-based physics.> We
have supplemented the information obtained from this
group by extending the study to include students enrolled
in our special physics courses for prospective and practic-
ing precollege teachers and in the standard introductory
physics courses at the University of Washington. We have
also examined responses by high school physics and phys-
ical science students to some of the same questions that we
administered to the college students in the study. Although
there were differences in severity, the nature of the difficul-
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