This serves to reinforce our belief that the dynamics of photons
and of other particles can be brought, for some purposes at least,
within the same descriptive framework. Our next step will be to
suggest what that framework might be. Our argument will
appeal to one’s sense of what is plausible; it will not be logically
inescapable. But as the old saying goes, “the proof of the pudding
is in the eating,” and we shall see how beautifully one can de-
scribe the transition from Newtonian to non-Newtonian behavior
on the basis of our conclusions (which are indeed precisely those
of special relativity).

FTER AND RADIATION: THE INERTIA OF ENERGY

Are not gross Bodies and Light convertible into one another, and
may not Bodies receive much of their Activity from the Particles
of Light which enter their Composition?

Newton, Opticks (4th ed., 1730)

It would be quite wrong to suggest that Newton had really
anticipated 20th-century physics to the- extent that the above
quotation might imply, but his provocative query is superbly
appropriate as an introduction to the discussion that we shall
now undertake. For we shall consider the intimate connection

. between the inertia of ordinary matter and the energy of radiation,

and in so doing we shall develop some dynamical results that
apply equally to photons and “gross bodies.”” We shall obtain,
as one of the consequences, a full account of the relation between
speed and kinetic energy for the electrors in the ultimate-speed
experiment.

Our starting point will be a gedanken experiment (literally a
“‘thought experiment,” i.., a fictitious, not really feasible ex-
periment) which was invented by Einstein himself in 1906.! The
purpose of it is to suggest that energy must have associated with
it a certain inertial mass equivalent.2 We suppose that an amount
E of radiant energy (a burst of photons) is emitted from one end
of a box of mass M and length L that is isolated from its surround-
ings and is initially stationary [Fig. 1-4(a)]. The radiation
carries momentum E/c. Since the total momentum of the system
remains equal to zero, the box must acquire a momentum equal

!A. Einstein, dnn. Phys., 20, 627-633.(1906).
2By inertial mass we mean the ratio of linear momentum to velocity.

ﬁ

Fig. 1-4  Einstein’s box—a
(a) hypothetical experiment in
| | which a box recoils from its
| L initial position (a) to a final
——r position (b) as a result ofa
(b) H_L ” burst of radiant energy
traveling from one end of the

a.] L;Ax - box to the other.

to —E/c. Hence the box recoils with a speed v, given by

E

YT T e

(1-5
After traveling freely for a time At (= L/c very nearly, providec
v K ¢), the radiation hits the other end of the box and conveys
an impulse, equal and opposite to the one it. gave initially, whick
brings the box to rest again.! Thus the result of this process is tg
move the box through a distance Ax:
EL ‘
Ax =vdt = — o= (1-6)
But this being an isolated system, we are reluctant to believe that
the center of mass of the box plus its contents has moved. We
therefore postulate that the radiation has carried with it the
equivalent of a mass m, such that

mL 4+ MAx = 0 a-n
Putting the last two equations together, we have

E
2

or E=mc (1-8)

For the man on the street, Einstein and relativity are prob-.
ably epitomized by this result. For the physicist, its importance
is not lessened by its becoming hackneyed; it asserts a funda-
mental inertia of energy. Although the calculation as we have!
presented it (which differs somewhat from Einstein’s original
version) points in the first instance to the mass associated with
radiant energy, one quickly recognizes that the implications are
much wider than this. When the radiation is emitted from one
end of Einstein’s box, that end must surely suffer a decrease, by
!If.you feel that more careful account should be taken of the recoil of the

box and its effect on the time and distance of transit of the radiation, see
Problem 1-13.
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the amount E/c?, in its inertial mass. Likewise, the absorption
of the radiation at the other end means an addition to the mass
of that portion. Once the energy has been absorbed, it loses its
identification as the energy of photons and ultimately becomes
just an addition to the thermal energy. And we are quickly led
to the idea that energy in any form has the mass equlvalent
defined by Eq. (1-8)—a general principle of the inertia of energy. !
The prime example of the mass-energy equivalence, to which
we owe our continuing existence, is provided by thermonuclear
reactions occurring in stars such as the sun. Observation tells
us that radiant energy is reaching us from the sun at the rate of

1.35 X 10° watts/m?. Given this figure and Eq. (1-8), we can -

infer that the mass of the sun is decreasing at the rate of about

4.5 X 105 tons/sec—an impressively rapid loss, even though it is

only about 1 part in 10'? of the sun’s mass per year. This comes
about through chains of nuclear reactions, chief among which is
the sequence by which hydrogen ('H) is converted to helium
(*He). One must, of course, have four hydrogen atoms to end
up with one helium atom, and the process takes place in several
separate steps. One of these steps is particularly worth men-
tioning here, because it is a simple and remarkably direct ex-
ample of the equivalence of the mass of ordinary matter and the
energy of photons. It is this:

p+ D—3He +7v (1-9

A proton fuses with a deuteron D (the nucleus of hydrogen-2,
containing one proton and one neutron), making a system of two
protons and one neutron, which is the nuclear composition of
®He. But, as mass- spectrometer measurements show us, the
mass of this combination is greater than the mass of 3He in its
normal state. Here are the approximate values:

Proton 1.6724 X 1027 kg
Deuteron 3.3432

»+D 5.0156

3He nucleus 5.0058

Mass excess 9.8 X 10—30kg

This amount of mass is carried off by a photon (a ¥ ray) as in-
dicated by Eq. (1-9). The energy of that photon is given by

'For a fine discussion of this question, see M. von Laue’s article “Inertia
and Energy” in Albert Einstein: Philosopher-Scientist, Vol. 11, (P. A. Schilpp,
ed.), Harper Torchbook, Harper and Row, New York, 1959.
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Eq. (1-8):

9.8 X 10730 x 9.0 X 1016
8.8 X 1013 joule
= 5.5 MeV

E = mc?

This process has been studied in the laboratory, and 7 rays of
the expected energy have been observed.! It should perhaps be
added that such reactions, when they occur as thermonuclear
reactions in the sun, require temperatures of the order of 107 °K
and thus take place only in the inner regions. Gamma rays, such
as those just considered, are completely absorbed before reaching
the sun’s surface, and their energy finally escapes in photons with
individual energies of the order of only 1 eV—infrared, visible,
and ultraviolet—that constitute the familiar solar spectrum.

The equation E = mc? has (at least in popular accounts)
been so exclusively linked to nuclear transformations as to divert
attention from its universality. But the message of Einstein’s
equation is that any change AE in the energy of a body implies
a corresponding change Am in its inertial mass:

AE = c2Am (1-10)

A golf ball in motion has more mass than the same golf ball at !
rest. The heated filament of a lamp has more mass than the same

filament when cold. A charged capacitor has more mass than the

same capacitor uncharged. And so on. Because, in terms of
familiar magnitudes, the mass associated with a given amount of
energy is exceedingly small (e.g., the energy used per day for

domestic purposes in a city of a million people has a mass equiv-

alent of only about 1 g), this intimate connection between the
two was long unrecognized. Einstein regarded the discovery of
this connection as being extremely important. To quote his
own words?:

The most important result of a general character to which the
special theory has led is concerned with the conception of mass.
Before the advent of relativity, physics recognized -two con-
servation laws of fundamental importance, namely, the law of
the conservation of energy and the law of the conservation of
mass; these two fundamental laws appeared to be quite inde-

1W. A. Fowler, C. C. Lauritsen, and A. V. Tollestrup, Phys. Rev., 76, 1767
(1949).
2A. Einstein, Relativity, Crown, New York, 1961.



pendent of each other. By means of the theory of relativity they
have been united into one law.

Perhaps one of the best ways to appreciate the pervasive
character of the mass-energy equivalence is to consider a single,
neutral atom in a piece of ordinary matter. From one point of
view it is just one of a collection of what Newton called ‘\‘solid,

| massy, hard, impenetrable, movable Particles.”! The question
of any inner structure does not arise, and it seems almost obvioug
that the atom’s inertial property should be described by a single
« quantity that we call the mass. But now consider this same atom
) from the standpoint of present-day knowledge. Itis a complicated
assembly of electrons, neutrons, and protons (and if we want to
probe more deeply, there is finer structure yet). The mass of
the atom as a whole contains positive contributions from the
kinetic energies of its swiftly moving constituents, and contri-
* butions of both signs (predominantly negative) from the po-
tential energy of their electrical and nuclear interactions. (Note
that a force of attraction between two particles automatically
represents a negative contribution to the total mass of the Sys-
tem.?) Any change in the internal state of the atom is accom-
panied by a flow of energy into or out of it, with an associated
increase or decrease in its mass. The ability of the constituents
to cohere depends on the fact that their total energy in this con-
figuration is less than if they were all separated from one another.
In these terms, then, the mass of an atom is the result of a re-
markable and subtle synthesis. Yet it serves to characterize the
whole atom in every dynamical context—including gravitation—
in which it moves as a single unit.

ENERGY, MOMENTUM, AND MASS

Let us now try to put together some of the results we have dis-
cussed. For photons we have

E=cp (1-3)

and

]

m= = (1-8)
1Sir I. Newton, Opricks, 4th ed., 1730; reprinted in revised form by G. Bell,
London, 1931; Bell edition reprinted by Dover, New York, 1952.

*Provided the strength of the attractive force gets less with increasing separa-
tion, which is true of all such forces between elementary particles in atoms.

(the first experimental, the second based on Einstein’s box).
Combining these, we have

m= = (1-11)

In Newtonian mechanics, however, we have

_P _
m = 1-12)

It looks as though we might regard Eq. (1-11) as a particular
case of Eq. (1-12), for v = ¢. If, further, we suppose that Eq.
(1-8) describes a universal equivalence of energy and inertial
mass, we can combine Egs. (I-8) and (1-12) into a single state-

ment:
2

E=C¢? (1-13)
12

Now in classical mechanics we are never concerned with
absolute energies but only with energy differences, and with the
transformation between one form of energy and another. A
particle suffers a change of potential energy, for example, and its
kinetic energy undergoes a corresponding change, so that the
total energy remains constant. The basis for analyzing all such
situations is Newron’s law. The increment of kinetic energy
corresponds to the work done by external forces,’ and we have

dE = Fdx = dldx
dr

‘1e.,

dE = vdp (1-14)
If we accept Eqgs. (1-13) and (1-14) we can obtain from them a
relationship, now proposed as a general one, between energy
and momentum for a particle. We do this by multiplying to-

gether the left and right sides of the two equations, and in-
tegrating:

EdE = ¢?pdp
Therefore, g:} : }'}“
E2? = c2p?7} Ey2 (1-15)

where E,® is a constant of integration, written explicitly as the
square of some constant energy.

The ultimate-speed film presents evidence that, even under conditions where
some of the features of Newtonian mechanics have broken down, the in-
crease of energy (kinetic energy) of an electron is still equal to the work
calculated from the electrostatic force multiplied by the distance traveled.
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From here it is possible to proceed in several ways. For
example, we can substitute in Eq. (1-15) the relation ¢p = Ep /c
from Eq. (1-13). This leads at once to the following result:

E

EQw)i= A — v2/c2)12

(1-16)

For v < ¢ we can approximate this exact result by the binomia]
T ————,,

expansion, neglecti i 2/c2"
exp neglecting terms of higher order than v*/c?.

[Approximate result (v K ¢)] E() ~ Eo + % <£20> 2 (1-17)
c

If Eq: .(1—17) is to harmonize with Newtonian mechanics at low
‘ velocities, we must identify Eo/c? with the classical inertial magg
of a particle: Let us denote this by m,. Then Egs. (1-8) and
(1-16) together lead to an explicit variation of inertial mass with
speed:
mo

me) = T w2jeyin

(1-18)
tl‘he quantity mo, which in Newtonian mechanics would be the
inertial mass of a body, now assumes a new role as the rest mass
of the body for v = 0; at any other speed the inertial mass is
greater. !

An increase of inertial mass with speed is of course implied
as soon as one embraces a general principle of the inertia of
fenergy. The particular form of variacion expressed by Eq. (1-18)
is shown graphically in Fig. 1-5, together with some experi-
mental results based on the electric and magnetic deflection of
_energetic electrons.

Equations (1-15) and (1-18) are two of the central results
lof the new dynamics; the first of them—the relation between
energy and momentum—will prove to be of special importance
and applicability. But the kinetic energy of a particle, so valuable
a q.uantity in classical dynamics, now takes on a secondary status.
It is merely the difference between the total energy E and the
rest energy Ey:

A 2
L s [ (1-19)

1
A = v2/c2)1z I]
.Of.course K remains a quantity of practical importance, because
it is the measure of the extra energy conferred on a particle
tAnd the quantity Eo (= moc?) is the rest energy. Thus for electrons (for

example) we ha =09, . - —14:
o Meg/. ve mo =9.11 X 1031 kg, Eo = 8.2 X 10-14 joule =

o

Fig. 1-5 Variation
of inertial mass with
speed for electrons.
Based on data of
Kaufmann (1910),

Bucherer (1909), and

Guye and Lavanchy

(1915). (After R. S.

Shankland, Atomic

and Nuclear Physics,

Macmillan, New

York, 1961.)
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through the work done by external forces. Note that K is not
obtained by substituting into the expression Lmo? the value of m
calculated from Eq. (1-18)—a frequently made error, because
the temptation to cling to the Newtonian form of the kinetic
energy is very strong.

At the risk of seeming repetitious, let us reemphasize the
significance of m(v) as defined by Eq. (1-18). 1t describes the
inertial property of a body moving with velocity v, so that the
momentum p is given by the equation

p = m@)v (1-20)

It also describes the total energy content of the body, so that i\

E = m(v)c? (1-21)
Now it is the quantities p and E, rather than m(v) by itself, that
figure in any actual dynamical situation. In this sense the vari-
able mass m(v) is just a convenient construct which, for example,
allows us to preserve the form of the Newtonian statement that
momentum is mass times velocity. Many physicists prefer to
reserve the word mass to describe the rest mass mo, 2 uniquely
defined property of a given particle, But this is essentially a
matter of taste.! Whatever words one elects to use, there is no
disagreement on the fact that Egs. (1-20) and (1-21) describe
the momentum and total energy of a particle, where m(v) is
given by Eq. (1-18).

1And one cannot escape the fact that, for almost any particle, even the rest
mass involves contributions associated with the motions and kinetic energies
of its constituents.



The denominator (1 — v?/c?)"/? appears so often in specig]
relativity, and is so awkward to write, that nearly all discussiong
of relativity make use of a single symbol, 7, defined as follows
Put .

1

YO = Gy (1-22)

Then we have

m = Ymg (1-23)
P = Ymyv (1-29)
E = Ymoc? (1-25)

where in using Eqs. (1-23) to (1-25) we must remember that v
depends on the speed v according to Eq. (1-22).

IS THE NEW DYNAMICS CORRECT?

It is important to ask whether Eq. (1-19) does indeed provide a
correct account of the relation between speed and kinetic energy
as observed, for example, in the linac experiment. Rearranging
the result, we have

1 + K/moc? = (1 — v2/c?)~1/2
Therefore,

1 —0v?/c?

(1 + K/moc?)—2

or
2

v 1 — (1 + K/moc?)—?] (1-26)

Clearly the rest energy moc? provides a natural unit in which to
measure the extra energy K that is added to a particle by means
of an acceleration process. We can, in fact, draw up a table
showing how the speed would depend on K for any particle
whatsoever (Table 1-4).

Given that, for electrons, moc? = 0.51 MeV, we can readily
plot a curve of v?inm?/sec? against Kin MeV. This curve has been
drawn in on the graph of the data in the ultimate-speed experi-
ment (Fig. 1-3). It may be seen that the agreement between
theory and experiment is very good, and speaks strongly for the
correctness of the revised dynamics, as does the measured varia-
tion of mass with speed, shown in Fig. 1-5.

If we wanted to plot a curve of v? versus K for protons, all

TABLE 1-4: SPEED VERSUS KINETIC ENERGY FOR PARTICLES

K/moc? (1 + K/moc?)—2 v2/c? v/e v2, X 1016 m2/sec?
0.1 0.8264 0.1736 0.417 1.56
0.2 0.6944 0.3056 0.553 2.75
0.3 0.5917 0.4083 0.639 3.67
0.5 0.4444 0.5556 0.745 5.00
1.0 0.2500 0.7500 0.866 6.75
2.0 0.1111 0.8889 0.943 8.00
5.0 0.0278 0.9722 0.986 8.87
10.0 0.0083 0.9917 0.996 8.93
30.0 0.0010 0.9990 0.999 8.99

which gives moc? = 0.938 GeV (or 938 MeV), and Table 1-4
would provide the rest of the information needed. The fact that
this does indeed give correct results for protons is amply attésted
in the operation of big nuclear accelerators, and there is plenty
of evidence that Eq. (1-26) holds for particles of all kinds.

Among the various features of these modified laws of motion,
the phenomenon of the limiting speed ¢ is perhaps the most
noteworthy. It means that energy (and mass) can be piled onto
atomic particles without increasing their speed appreciably. To
see in detail how this works, it is convenient to rewrite Eq. (1-16)
as follows:

i
we would need to do would be to put mo = 1.672 X 1072 ;xl‘}/g,

(1 — v2/62)1/2 — E()/E

Therefore,
v2/c? = 1 — (Eo/E)? (1-27a)
and
v/c = [l — (Eo/E)*1'2
For E > E,, we then have, approximately,
v/e = 1 — $(Eo/E)? (1-27v)

For example, the Harvard-M.LT. electron accelerator has as its
injector a linear accelerator (like the one used in the ultimate-
speed film) that gives the electrons 15 MeV energy. The main
accelerator brings the electrons up to about 5 GeV (= 5000 MeV).



Using these values, one finds

Injection from linac (15 MeV) — v/c = 0.9995
Final energy (5 GeV) - v/c = 0.99999995

Thus the change of v/c after the preliminary acceleration is

. on]
about 5 parts in 10*. These big nuclear machines might ap).]

propriately be called “ponderators”® rather than acceleratorg
for to an excellent approximation they do just add mass to the,
particles injected into them, with no significant increase in the
speed as such.

MOTION UNDER A CONSTANT FORCE

The simplest dynamical problem in classical mechanics is the
motion of a body under a constant force. Let us see how this
problem is modified in the new dynamics. Suppose a force F
acts on a body for a time ¢ (we assume one-dimensional motion);
the body is assumed to be initially at rest, and ends up with e;
speed v. Then

_ _ mobt
Ft = mo = 1 — v2/c2)il2 (1-28)

Therefore,

1 — v°/c% = (mov/Fr)
¢® = o1 + (moc/F)

and
) 8
O = U5 Gmocy e (1-29)

This is a rather complex-looking result. Let us consider two
extreme cases:

i @) Fr< moe:
(moc/F)® > 1
Therefore,

__¢ _F
(moc/Ft) ~ my

H (b) Ft > mgc:
(moc/Ft)’ — 0

v(r) = t

'This name was first proposed around 1945 by Prof. A. G. Hill of M. L. T.

Therefore,
v(®) = ¢

Case (a) corresponds to ordinary Newtonian mechanics.
Case (b) displays the now-familiar property of a limiting constant
speed ¢ for motion under any force, no matter how large it is or
for how long it is applied.

¢EINSTEIN’S BOX UNHINGED”

According to our present beliefs as expressed by special rela-
tivity, the speed of light in free space represents an upper limit,
not only to the speed of material particles such as electrons, but
also to the speed with which an interaction of any kind can be
propagated—gravitational, nuclear, electric, etc. Were this not
so, it would be possible (as we shall discuss later) to arrive at a
paradox involving the interchange of the roles of cause and
effect, according to one’s point of view (see the discussion of
causality near the end of Chapter 4).

One particular consequence of the physical speed limit
equal to ¢ is that the classical concept of an ideal rigid body finds
no place in special relativity. (And strictly speaking, it cannot
be justified in classical miechanics either.) For by a rigid Pody we
mean an object al ng which physical information can be trans-
mitted in an arbitrarily short time, so that the object is set in
motion instantaneously, as a single unit, when a force is applied
to any point in it. For any ordinary box the information that
one end has been struck is transmitted as an elastic wave, which
we know is many orders of magnitude siower than a light signal.
Thus the Einstein box argument in its original form cannot be
maintained. At the receiving end of the box, the first intimation
that anything had happened at the other end would be the
arrival of the radiation itself. We can, however, rehabilitate the
argument as follows.

Ignore completely any connection between the ends of the
box, and regard it as two separate masses, m; and my (Fig. 1-6).

‘Just suppose that one end, of initial mass m4, emits energy E at ;

¢t = 0 and suffers a mass change to m,’. It acquires a velocity |
v, given by

\ by = —E/c

m1'




Fig. 1-6 *“Einstein’s box
unhinged.” The recoil
processes in two unconnected

D Just after
emission

masses in consequence of a
burst of radiant energy

emitted from one (m1) and
absorbed in the other (my).

Just after
absorption

If m, were originally at x = 0, its position at any later time is
thus given by

E
Xl(t) = — ml,cl‘

(1-30)
When the energy arrives at ms (at ¢t = L/c) it causes a recoil
and a change of mass so that we have, for the position of m.,

E
mz’c (t - L/C)

xo() = L + (1-31)
Let the total mass be M, and let the position of the center of
mass be ¥ before the radiation was emitted from m; and X after
it was absorbed in m,. Then

M% = my-0+ mg-L (1-32)
and

Mz = m{ <~€ t> + ms! [L =+ E, (r — L/C)]

my'c ) mo'c

ie., i

My = —§t+m2’L+§t—£2L (1-33)

C c C
Hence, if ¥ = X,
’ ! E ’
Amo' = mo' — my = — = —Am (1-34)

C2

Thus the principle of inertia of energy finds a sounder theoretical
basis, but by this stage we have seen its real vindication in the
experimentally observed behavior of particles.

SOME COMMENTS

In this chapter we have presented evidence to show that the
behavior of particles at very high speed simply does not conform
to Newtonian dynamics. By analyzing this behavior, and by

PROBLEMS

following Einstein in the assumption that the center of mass of
an isolated system does not spontaneously shift, we have de-
veloped some relations (which appear experimentally to be valid
for all attainable speeds) connecting energy, momentum, and
mass. This has allowed us to arrive rather quickly at some
important dynamical results. On the other hand, it is clear that
the arguments we have used involve a good deal of conjecture;
they are suggestive but by no means irresistible. Furthermore,
one may well ask what all this has to do with the things one
normally thinks of when relativity is mentioned—such things as
the Lorentz contraction, frames of reference, space-time, the
Michelson-Morley experiment. The answer is that the connection
is very, very close. But apart from one small hint in our discussion
of the results of the ultimate-speed experiment, we have so far
not tried to deal with these very fundamental aspects of rela-
tivity. There is a good reason for that; each of the experiments -
that we cited was conducted within a single frame of reference—
the experimenter’s laboratory. But the concepts of distance, time,
and velocity were involved at every turn; without them it is
impossible to formulate or discuss dynamics.

It was in the attempt to explain optical phenomena that the
need for some drastic revision of our ideas about space and time
finally became overwhelming. The development of this problem,
culminating in the Michelson-Morley experiment, is the subject
of Chapter 2. And then we shall see how Einstein, through his
insistence on a fundamental reexamination of the bases of dy-
namical measurement, made it possible to fit everything together
within a single dynamical scheme. The same concepts of space
and time are found to be appropriate to the facts of optics and
electromagnetism and to the non-Newtonian dynamical behavior
that we have been discussing in this chapter. Our program, then,
will be to describe the predicament engendered by the facts of
optics, to show how Einstein eliminated the apparent conflict
between optics and Newtonian mechanics, and then to illustrate
some of the applications of Einstein’s formulation of the prin-
ciple of relativity.

1-I A burst of 1014 electrons accelerated to an energy of 15 MeV per
electron is stopped in a copper target block of mass 100 g. If the block
is thermally insulated, what is its temperature rise? The specific heat
of copper is 0.09 cal/g-°K. 1\{\ b



quite independent of any motion of the source itself. Ip our
first discussion of the Michelson-Morley experiment (in Chapter 2)
we stated that this was indeed the case. For a long time it waq
believed that this was proved by observations on the light from
close binary stars. The two members of any such binary syster
have large relative velocities, and when one star has a component
of velocity toward the earth the other will be moving away,
was argued that if these velocities were communicated to the
emitted light, the apparent motions of the stars would be djg-
torted away from the Newtonian orbits required by the law of
gravitation. No such distortions were observed. It has been more
recently argued, however, that since these binary star systems are
usually surrounded by a gas cloud, which absorbs and then re-
radiates the light from the stars, the speed of the light that crosses
interstellar space may in any case be( independent of any possible
influence of the original moving sources.® Subsequently, how-
ever, experiments have been made on rapidly moving terrestrial
sources of radiation which verify this aspect of Einstein’s second
postulate in a convincing way. In one such experiment ma‘lde with
high-energy photons, not visible light, the source consisted of
unstable particles (neutral = mesons) traveling at 99.975%, of.' the
speed of light. The measured speed of the photons emitted
forward with respect to this motion was (2.9977 & 0.0004) X
108 m/sec.2 Reference to Table 1-2 will show that this is in
excellent agreement with the best values of ¢ obtained .for sta-
tionary sources. In Chapters 5 and 6 we shall discuss in more
detail the radiation from moving sources, in connection with the
relativistic law of addition of velocities and related phenomena.

THE RELATIVITY OF SIMULTANEITY

An immediate consequence of Einstein's prescription for. syn-
chronizing clocks at different locations is that simultaneity is
relative, not absolute. Let us see how this follows.

Suppose that three observation stations 4, B, anfi C 2.11‘6
equally spaced along the x axis of an inerti.all frame S in v‘fhlch
they are all at rest. We can construct a simple x-# coordinate
system, on which we draw “world lines” (to use the 'flccepted
phraseology) showing the development of the system in space
13, G. Fox, Am. J. Phys., 30, 297 (1962).

°T. Alvéger, F. J. M. Farley, J. Kjellman and 1. Wallin, Phys. Letters, 12,
260 (1964).
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Fig. 32 (a) Space-time diagram showing experiment i j o
to define simultaneity at stations A and C (at rest in this

reference frame) by light signals emitted from a station

B midway between them. (b) Equivalent experiment for

the case in which A, B, and C all have a velocity with

respect to the reference frame.

and time [Fig. 3-2(a)]. The world line of any given particle is
just a graph of its position as a function of time; it provides a
complete picture of the history of the particle as observed within
a given frame of reference. The world lines of 4, B, and C are of
course just vertical lines parallel to the ¢ axis, corresponding to
X = constant. Suppose that a light or radio signal is sent out
from Bat ¢ = 0. It travels at the same speed ¢ forward and back-
ward along the x axis—an assertion that embodies the uni-
versality of c¢. This signal is described by two sloping lines
X = xp = ct. The arrival of the signal at the positions of 4
and C'is thus given by the intersections 4, C;, and simultaneity
at the positions of 4 and C is defined by the line 4,C, parallel
to the x axis, which joins a series of points possessing the same
value of ¢,

But now suppose that 4, B, and C are at rest in an inertial
frame S’ which is moving with respect to S at a speed v along
the x direction [Fig. 3-2(b)]. The world lines of A, B, and C are
now inclined as shown. A signal sent from B at r = 0 is again
described (in S) by the lines x = xz =+ ct, and the arrival of the
signal at the positions of 4 and C is now given by the inter-
sections 4;" and C,’. These are clearly not simultaneous for S,
because the line 4,'Cy’ is manifestly not parallel to the x axis.
Or, to put it more concretely, the signal reaches 4 before it
reaches C because, as observed in S, A4 is running to meet the
signal pulse whereas C is running away from it. But we require
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