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EnergyConservation—

The First Law of
Thermodynamics

What is thermodynamics? Very briefly, it is the study of
energy and its transformations. We can also say immedi-
ately that all of thermodynamics is contained implicitly
within two apparently simple statements called the First
and Second Laws of Thermodynamics. If you know anything
about these laws, you know that they have to do with
energy—the first, explicitly, and the second, implicitly.
The First Law says that energy is conserved. That’s all;
you don’t get something for nothing. The Second Law says
that even within the framework of conservation, you can’t
have it just any way you might like it. If you think things
are going to be perfect, forget it. The Second Law invokes
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2 Understanding Thermodynamics

a quantity ‘c.alled entropy, something that is not part of our
experience, so we'll let it go for a time and consider first
the First Law. There is a certain logic in taking up the
first things first, and furthermore it allows us to deal with
something we all know about, namely, energy.

What is energy? One might expect at this point a nice
clear, concise definition. Pick up a chemistry text, a physics
text, or a thermodynamics text, and look in the index for
“Energy, definition of,” and you find no such entry. You
think this may be an oversight; so you turn to the appro-
priate sections of these books, study them, and find them
to be no help at all. Every time they have an opportunity
to define energy, they fail to do so. Why the big secret? Or
is it presumed you already know? Or is it just obvious?

For the moment, I’'m going to be evasive too, but I’ll
return to the question. Whatever it ¢s, one thing we know
about energy is that it is conserved. That’s just another
way of saying that we believe in the First Law of Thermo-
dynamics. Why do we believe in it? Certainly no one has
proved it. On the other hand, no one has been able to find
anything wrong with it. All we know is that it has always
worked in every instance where it has been applied, and we
are happy with it simply because it works. Why does it
work? We haven’t the faintest idea; it’s just a miracle of
nature. The conservation law is a description of how
nature works, not an explanation. Fortunately that’s all
we néed.” *

Although we do not know why it works, we do know how
it works. Any conservation law says that something doesn’t
change, and any use of the law just involves accounting.
We know there is a fixed amount of something, and we need
merely find the various pieces that add up, or account for,
the total. To give you an idea of how this is done, I am
going to tell a ridiculous story. I've stolen the idea of this
story from Richard Feynman, Nobel Prize-winning physi-
cist and professor at the California Institute of Technology.
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His “Lectures omr Physics”’? should be studied by every
serious student of science and technology.

It is the story of 37 sugar cubes, a small boy, and his
mother. To set the scene, I will ask you to imagine the
boy’s room at a corner of a house in rural surroundings. The
room has two windows, one facing west and the other facing
north. For identification, we will call them window W (for
west) and window @ (sorry about that). It happens that
window W overlooks a small pond. The boy (perhaps his
name is Dennis) plays in this room, and his mother looks
in from time to time. One day he asks his mother for some
blocks to play with. She has no blocks, but she decides that
sugar cubes will do. So she gives him 37 sugar cubes and
tells him he is not to eat any or he’ll be punished. Each
time she returns to the room she counts the sugar cubes
lying around, and they total 37; so all is well. But one day
she counts and finds only 35. Now Dennis points to an
old cigar box he plays with, and his mother starts to open
it. But Dennis screams and says, “Don’t open the box”.
The mother, of course, realizes she could open the box any-
way, but she’s an intelligent, modern mother, and she
realizes that this would be a traumatic experience for the
boy; so she takes another course.

Later in the day, when she again sees 37 sugar cubes
lying about, she weighs the empty box, getting a value of
4.34 oz. She also weighs a sugar cube, getting a value of
0.12 oi. Now the clever lady sets up a formula by which
she can check the number of sugar cubes:

wt of box — 4.34 0z 37
0.12 oz -

No. on floor +
This formula works perfectly for quite a time. The left side
always totals 37. But one day it does not. Two sugar cubes

1 Addison-Wesley Publishing Company, Ine., vol. I, 1963; vol. II,
1964.



4 Understanding Thermodynamics

are missing. A’s she ponders this problem, she notices that
window W is open. She looks out and realizes that the
missing sugar cubes could be dissolved in the pond. This
taxes her ingenuity, but she was once a nurse and knows
how to test the pond for sugar. So she adds a new term to
her formula, obtaining :

wt of box — 4.3 oz

0.12 oz |
-+ k (sucrosity of pond) = 37

No. on floor +

and determines the proportionality constant k by tossing
a cube into the pond herself.

This fixes up her formula, and again it works perfectly,
accounting always for 37 sugar cubes. As she uses the for-
mula, she begins to realize she could make her work easier
if she dealt with changes in the various terms from one
checking of the formula to the next. From this point of view
the formula can be written as

A(wt of box)
0.12 oz
-+ k A(sucrosity of pond) = 0

A(No. on floor) +

where the symbol “A” means change of. This equation
simply says that if sugar cubes are conserved, the sum of all
changes in the number of sugar cubes in various places must
be zero. This equation too works perfectly for a long period,
but one day it fails. The sum comes out not zero, but —4.
Four sugar cubes are missing! This time it doesn’t take
mother long to notice that both windows are open and that
ghe has no term in her equation to account for sugar cubes
thrown out through window Q. She does not see any sugar
cubes on the ground outside, but she does see several
squirrels running about. How can she possibly keep track
of all that goes on outdoors? The pond was bad enough,
but what about squirrels and who knows what else? Her
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husband, an electrical engineer, solves her problem by
building a detection system at each window that counts
the sugar cubes as they fly past, so it is no longer necessary
to keep track of what happens outdoors. It is only necessary
to record what passes through the walls of the room. The
mother revises her formula again to reflect the new account-
ing procedure:

A(wt of box)
0.12 oz
+ No. passing W + No. passing @ = 0

A(No. on floor) +

Note that we did not put A’s with the two new terms. They
need not be thought of as a change in anything. They just
represent a number of objects passing a boundary during
the interval between checks. In fact, we may as well simplify
these terms to read W and Q. We can also transpose them
to the other side of the equation; the result is

A(wt of box) - —Q-W

A{No. on floor) 4+ 019 oz

You see that we are getting more and more technical, and
when this happens, technical terms also begin to appear.
We may as well introduce several such terms here. Notice
that we have narrowed our attention down to the room and
to its walls; i.e., to a small region of space. In technical
language, we-call the room our system, and the walls become
its boundary. Everything outside the boundary is called the
surroundings. We would very much like to get rid of the sur-
roundings because of their infinite complexity, but we can’t
really ignore them. On the other hand, we can make our
formula look like it deals only with the system. The last
form in which we wrote our formula puts the terms that
have to do with changes in the system on the left. On the
right we have terms to show what passes out of the system,
but they are really there to account for changes in the sur-
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roundings. By associating them with the boundary of the
system we make the appearance of dealing solely with the
system. We treat Q and W as quantities, not as changes in
anything, but in fact they are there to account for changes
in the surroundings. Any conservation law must somehow
include both the system and its surroundings. By insisting
that we can account for the surroundings by counting at
the system boundary, we are in fact adding something new
to the content of a conservation law. It is a bit subtle but
becomes obvious once pointed out. We do not expect one
of Dennis’ sugar cubes suddenly to disappear from his room
on one side of the world and simultaneously to reappear
someplace on the other side of the world, even though the
other side is part of the surroundings. Why not? No simple
statement of a conservation law excludes this. But it just
isn’t reasonable; it doesn’t make sense. We'll leave it at
that. The point is that the system-and-its-boundary formula
excludes this possibility. We could also exclude it by insist-
ing that conservation exists between a system and its local
surroundings, but then we would have to define ‘“‘local’”’ as
any part of the universe with which the system interacts.
Then we would find it necessary to define “interacts,”” and
80 on. The beauty of the mathematical system-and-its-
boundary formula is that it avoids this chain of verbiage,
and this is one of the major advantages of the use of mathe-
matics in the formulation of the laws of science, not that
conservation of sugar cubes is a law of science—not yet,
at any rate. So let’s return to Dennis, his mother, and the
37 sugar cubes. :

All is going well, except that Dennis’ final sugar cube just
entered the surroundings. It's time for a new game, and
Dennis’ mother dumps a handful of sugar cubes in his
cigar box. This time she doesn’t even count them. Can she
still play the game? She certainly can, and she can even
delay the start. All it takes is an initial observation and
the setting of the window counters to zero. The formula
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always works, and when the counter on window @ breaks
down, the mother realizes she can use her formula to find
out how many sugar cubes are being fed to the squirrels.

Now consider another situation. A friend comes to visit
and hands Dennis a bag of jelly beans. The mother doesn’t
happen to see this, and the friend says nothing about it.
Furthermore, Dennis treats the jelly beans as if they were
illegal; he never leaves any on the floor, and he won’t say
what he has. His mother is very curious, but all she knows
is that Dennis has something in his cigar box. Nevertheless,
she decides to try her formula; and it’s going to work, be-
cause jelly beans come in lumps, and that’s essential to her
accounting scheme. Remember, she does not know what
Dennis has. It is only necessary that she believe in lumps;
she doesn’t have to see them. She does have one problem;
she does not know the weight of a lump. So her formula must
be written

A(wt of box) _
a

—-Q—-W

How does she get a, the weight of a lump? There’s only one
way; she must use her formula. So she weighs the box and
sets the counters. Then after an interval she reweighs the
box, records Q and W; now a is the only unknown in her
formula, and she determines its value. After that she can
use the formula to check her “law of conservation of lumps.”
Altermatively, she can use it to calculate any one of the
three factors in it from the other two, provided only that
she accepts the law of conservation of lumps to be valid.
Perhaps this is all absurdly obvious. If so, we can make it
more cryptic by noting that the left-hand member of the
mother’s formula can be viewed a bit differently. This
formula represents no more than a counting scheme, and
Q and W represent counts directly. But the left-hand
member is a count only indirectly. Clearly, the number of
counts that it represents is given by the change in some
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Junction of the weight of the box. Thus the equation may

equally well be written

Alf(wt of box)] = —Q — W

where f(wt of box) = wt of box

Here we know precisely the nature of the function f(wt of
box), and by experiment we have established the value of a,
the only adjustable parameter in it. However, we can
imagine more complex situations where the function de-
pends on properties of the box other than weight (perhaps
on its electric charge or its permeability to x-rays). More-
over, the nature of the function may be far from simple.
Thus we begin to see how a conservation law can become
both difficult and abstract.

The law of conservation of energy is inherently more
difficult and abstract because it does not deal with the
conservation of lumps. Energy does not come in uniform
lumps. This law proclaims the conservation of a number
which does not represent any particular thing. Let’s examine
this in detail. How is energy conservation similar to and
different from conservation of sugar cubes and jelly beans?
They are alike in that the formulas which describe their
conservation are mathematically similar; that is, the for-
mulas include terms that account for changes in both the
system and’ its surroundings. Moreover, their simplest and
most convenient expression is given in terms of changes
which oceur within the system and in terms of quantities
which pass the boundary of the system. This also requires
that conservation be local. Thus we can write the same
equation for energy conservation as we did for the con-
servation of lumps. It is analogous to the case in which we
never saw the lumps, for nobody has ever claimed to see
energy. The energy of a system is no more evident than
jelly beans enclosed in a cigar box. So our conservation
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formula has the form,_

A(energy of system) ,,
= —energy out by @ — energy out by W

The energy of the system is presumed to be some function
of the measurable properties of the system, just as the
number of jelly beans was a function of the weight of the
box. But we can’t weigh energy, and the functional rela-
tionship is not known ahead of time. We can only guess of
what property the energy of the system is a function. So
we guess that it may be a function of temperature, pressure,
composition, magnetization, etc. We really don’t know so
we'll leave it indefinite by writing

Energy of system = U(T,P,etc.)

where we call U the internal energy function, and the paren-
theses show of what property it is a function. Our conserva-
tion formula is now written

AU(TPete)] = —Q — W

The notation is often simplified still further so that we
usually have

AU = —-Q—-W

and we get careless with our terminology and call U simply
the internal energy, as though we know exactly what we're
talking about. But in fact we don’t, and U is known only
as a function of other things.

Q and W are terms representing energy passing the system
boundary, not just by different windows, but by different
modes. They are called heat and work, respectively, and
both words have a special technical meaning. Both can give
us all sorts of trouble, but for the moment let’s assume we
know all about them and can measure them.
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You may be thinking that I have somehow derived the
equation of energy conservation. Nothing could be further
from the truth. I have just written it down. That’s all
anybody can do. No matter how much is written about
this equation in therrdodynamics texts, no matter how many
fancy diagrams are drawn, no matter how confused the
issue is made by mathematical manipulations, if you look
carefully, you will find in the end that the author has
merely written it down. No fundamental law of science is
derivable by any means that we know today. If we could
derive such laws, they would not be called fundamental.
Then have I explained the law of conservation of energy?
Again, I have not. I have tried to make the fact that it
works seem plausible, but primarily I am trying to show
you how it works, and there is a little way to go yet.

One thing about my equation may be bothering you. It
is written with minus signs on both Q and W. The origin
of these minus signs lies in the fact that Dennis could
throw sugar cubes only out of the system. Had sugar cubes
somehow come only into the system, both signs would be
plus. However, the equation is usually written

AU =+Q —-W

This is just an accident of history. The first applications of
thermodynamics were made to heat engines, devices which
take in heat and put out work. The signs merely reflect a
decision o the part of the founding fathers to make heat in
and work out positive quantities for their favorite device.
You can write it any way you want, that is, +Q + W,
-Q—W, —Q+ W, or +Q — W. All that is required is
consistency in ascribing signs to your numerical values of
Q and W. We will henceforth follow the ecrowd and write

A[U(T,Pete)l =Q — W

How is this equation to be used? For engineering purposes
we want to use it to calculate either Q or W,-or even both Q
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and W if we can find a second equation connecting  and

W. But how can we use it without knowing the functional
relation U(T,P,etc.)? How are we to get numbers for this
function? How are we even going to find out what U is a
function of ? L

The answer to the last question is easiest. It involves the
notion of state. We say that the internal state of a system is
fixed when none of its measurable properties changes any
more. Then the problem is to find what measurable prop-
erties we need to establish at arbitrary values in order to
fix the state of a system. This is one of the major compli-
cations of thermodynamiecs—to know what the variables
are. The only way to find out is by experiment. The internal
energy is presumed to be a function of the same variables
as is the volume.

Having established the variables, say temperature T and
pressure P, how do we get the relationship between U and
these variables? This is the second major complication of
thermodynamics. We find in any ultimate analysis that we
must use our equation of energy conservation. This may
seem incredible; after all, the use of the equation

AlU(T,P) =Q —W

is to find Q or W. How can we use it to calculate values for
U(T,P) and Q or W at the same time? The secret is that
we don’t do both at the same time. We play the game forward
and backward, but at different times, just as Dennis’ mother
did when she used her equation backward to determine the
weight of a jelly bean or lump that she never saw. Having
done that, she could subsequently use her equation forward
to check on the conservation of lumps or to find the number
of lumps in the pond or the number fed to the squirrels.
The same thing holds true for the energy equation, except
that the process is more complicated because not only do
we never see the energy, it does not come in lumps.

In the laboratory we set up a small system and make
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12 Understanding Thermodynamics

changes in it, measuring T and P and @ and W. From these
it is possible to deduce U(T,P) for various values of 7' and
P within an additive constant. In use we always have
A[U(T,P)] so that the constant drops out. We can put down
U(T,P) in the form of a graph, a table, or an equation. But
we must have such information, and it must ultimately
come from experiment. Moreover, we must have U(T,P) or
U(T,P,etc.) for the particular kind of system we wish to
deal with. Gi¥én this information, we may apply the energy

formula
A[U(T,Petc)) =Q — W

to any process involving the same kind of system, and it is
in no way limited to just those processes used to determine
U(T,P,etc.). Any such limitation would make it of no use
at all.

Let us say that we know U(T,P,etc.) and now apply our
conservation formula to many different processes. We find
time after time that it checks out, that it works. Then one
day it doesn’t. What to do? We do just what Dennis’
mother did. We look for sugar cubes under the rug, in the
pond, or in any place we had not considered before. We
notice that our system changed its elevation. Maybe that
changes its energy. Sure enough, a bit of experimentation
shows that we can devise a potential energy function which
fixes our formula—for a time. We go through the whole
business ‘again and find we need a kinetic energy function
when the system has velocity. So we add terms to our
formula as follows:

A[U(T,P,etc.)] + A[PE(2)] + A[KE(w)] = Q@ — W

Fortunately, the two new functions are known explicitly
in terms of measurable properties; thus

Potential energy function = PE(z) = mgz
Kinetic energy function = KE(u) = 4mu?
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where z = elevation .
m = mass
g = acceleration of gravity
u = velocity

Thus

A[U(T,Pete.)] +mgaz + YsmAu? = Q — W

And so it goes. Whenever our equation does not work, we
can fix it up with a new term. Others may object that this
isn’t fair and accuse us of deciding arbitrarily that the law
of conservation of energy 7s valid and of being determined
to make it work. They claim that we doctor it up so that
everything comes out all right. They would, of course, be
correct if we ever added a term ealled ‘‘unaccounted for”
or “lost.” That would spoil it all. But it turns out that
every time we add a new term to our equation, we're also
able to say how to evaluate it from measurable parameters.
This sort of doctoring is completely justified. Can we do
the same thing with a law of conservation of sugar cubes?
The answer is no. What if Dennis stomps on a sugar cube?
We still have sugar but no cube. Or he may eat one, and
then we don't even have sugar.

Perhaps the ultimate test of our accounting scheme came
with the advent of nuclear fission. Energy appears in this
case to come from nowhere, but in fact a term provided by
Einstein readily maintains the validity of the conservation
equation. The new term is a nuclear energy function, and
its change is —c? Am, where ¢ is the velocity of light and
Am is the change in mass of the system. The minus sign is
necessary because Am is negative; the mass of the system
decreases. Our equation then becomes

A[U(T,P,etc.)] + mg Az + Y4m Au? — c2Am = Q — W

When we’re all done, what do we have? We have an
equation which is said to give mathematical expression to
the law of conservation of energy. But how else could this
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law be expressed except mathematically? Every form of
energy we have discussed is known only as a function of
other variables, and I have been careful to say internal
energy function, potential energy function, etc. Functions
are pencil-and-paper constructs. I can’t show you a function
that has any other substance, and that is why I can’t show
you a chunk of energy or why I can’t define it or tell
you what it is. It is just mathematical or abstract or just
a group of numbers. Thus we have no energy meters, no
device we can stick into a system which will record its
energy. The whole thing is man-made.

What we have is a scheme with a set of rules. The scheme
involves only changes in the energy functions. It is set up
this way because we have no way to calculate absolute
values of our energy functions. The remarkable thing about
this scheme is its enormous generality. It applies equally to
the very small and to the very large; it applies over any
time interval, short or long; it applies to living matter as
well as to dead. It applies in the quantum-mechanical and
relativistic realm as well as in the classical. It just plain
works. We can never be absolutely sure that it will always
work, but we are sufficiently confident so that with it we
make all sorts of predictions, and that is its use.




