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Detailed comparison of the settling time-noise bandwidth products of 31 types of low-pass filters 
demonstrates that the settling time-noise bandwidth product is the figure of merit for such filters 
when the goal is averaging. Common filters such as Butterworth, elliptic, and Chebyshev are 
found to be unusable for such purposes while others, such as Bessel filters, offer only moderate 
figures of merit. The best reported analog low-pass filter differs from ideality by only about 11 %. 
The optimum analog low-pass filter, having continuous, rational transfer function, is unknown. 

INTRODUCTION 

Consider the problem of measuring a slowly varying, non­
zero mean signal in additive, white noise. The signal may be 
the output of a previous demodulation stage so the mean is 
nonzero by contrivance. I Thus, the signal power spectrum is 
narrow, centered on dc, and, in the limiting case of a dc 
signal, is just a "delta function" at zero frequency, i.e., the dc 
signal is fully characterized by its mean value (signal power 
spectral component at w = 0). In contrast, the white noise 
power spectrum is constant, with bilateral power spectral 
density of 17 W!Hz, so that signal and noise power spectral 
overlap is small or negligible. In terms of time autocorrela­
tion functions, 2 the signal autocorrelation function is very 
broad or constant (for dc) so that the signal is easily predict­
able. The noise autocorrelation function is a delta function 
so that no predictability is possible. The dissimilarity 
between the signal and noise power spectra (and time auto­
correlation functions) is so great that signal processing is 
relatively easy. Optimum, linear signal processing results in 
optimum power signal-to-noise ratio (SIN), but at the ex­
pense of a mean square error of 3 

-::T 1 Joc S" (w)Sn (w) d 
e = 211" _ oc S" (w) + Sn (w) w, 

(1) 

where Sx (w) is the signal power spectrum and Sn (w) is the 
noise power spectrum. The optimum filter power transfer 
function (frequency domain power response function) is4 

IH(w)1
2
= Sx(w) , 

S,,(w) +Sn(w) 
(2) 

which may not be physically realizable. Evidently, the opti­
mum filter is a low-pass filter which most heavily weights 
spectral regions of high SIN. In the dc limit, i.e., 
Sx (w) = 8(w) and Sn (w) = 17, continuous integration is 
optimum and the error in the signal estimate may be arbi­
trarily reduced at the expense of measurement time.5 As will 
be seen, the optimum filter has zero bandwidth, but nonzero 
power transfer function. 

Even in the case of a slowly varying signal, it is easier to 
accurately and precisely estimate the signal mean, than it is 
to obtain a low-noise, low-distortion (small error) temporal 
copy of the signal. Normally, averaging is performed with 

low-order (n < 5), low-pass filters and distortion is irrele­
vant because all ofthe ac signal spectral power is deliberately 
sacrificed. Where low distortion is a constraint, higher-order 
filters with sharp cutoff, e.g., fourth-order Butterworth or 
Chebyshev, are preferred.6 

It should also be noted that phase linearity is an impor­
tant criterion if slowly varying signals, e.g., scanned spectra 
or chromatograms, are to be processed with minimum phase 
distortion. In this case, the filter should have linear phase 
(equivalent to symmetric impulse and step responses) . Since 
Bessel filters are the maximally fiat phase approximations to 
the ideal time domain (Gaussian) filters, they are good over­
all choices where both dc and low ac signal frequencies must 
be processed. We will emphasize the dc case, i.e., the signal 
varies little over the measurement period, because it is diffi­
cult to know, by inspection of a given low-pass filter (LPF) 
impulse response, whether it is sufficiently symmetric to im­
ply good phase linearity. Indeed, the impulse response of the 
third-order Bessel LPF does not seem particularly symmet­
ric to the unpracticed eye. 

However, LPF averaging is of more importance in noise 
reduction efforts than is generally realized since linear, time­
invariant filters also determine the noise reduction behavior 
oflinear, time-variant filters such as lock-in amplifiers, box­
car integrators/averagers, signal averagers, and correlators. 
Curiously, the figure of merit for LPF averaging filters has 
escaped notice. It is the intention of this paper to exhibit the 
natural figure of merit for LPF averaging applications and 
show that the best reported such filters depart from ideality 
by only about 11 %. 

Now suppose the signal, denoted by x(t), is applied to 
the input of a stable, linear, time-invariant, low-pass filter 
with causal impulse response h(t). Then the time domain 
output is the convolution 7 of x (t) and h (t) 

If x (t) is also causal, the lower integration limit is 0 and the 
measurement (integration) time is finite. The mean or ex­
pected value of x(t), denoted by E[x(t)], is8 

Il' E [x(t) ]=lim- x(r)dr. 
I-oc t 0 

(4) 
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Comparison of Eqs. (3) and (4) shows that the low-pass 
filter output well approximates the input mean, to within a 
scale factor, if the measurement time is prolonged and h (t) is 
almost constant over the measurement time. For the limiting 
case of causal dc input, e.g., a unit step input, the LPF output 
is the unit step response 

y(t)=Joo U(r)h(t-r)dr= rh(t-r)dr= r'h(r)dr, 
- 00 Jo Jo 

(5) 

where U(t) is the unit step function andy(t) asymptotically 
approaches H (0) (the dc gain). 

Thus, for a given measurement period, the best LPF for 
estimating a signal mean is the LPF which has constant im­
pulse response over the measurement period and zero im­
pulse response elsewhere. In this case, the impulse response 
may be removed from the integral in Eq. (3) and the integra­
tion limits are finite, so the signal is merely integrated over 
the measurement time. Note that the abrupt zeroing of the 
impulse response at the end of the measurement period gives 
the gated integrator its perfect settling characteristic. 

The optimality of the stable integrators may be con­
firmed by noting that the optimum processing, in least­
squares sense and for maximum power SIN ratio, is well 
known to be matched filtering, i.e., low-pass filtering with 
impulse response equal to a time-reversed, delayed replica of 
the input signal.9 Thus, the matched filter for the step func­
tion input may be approximated with a gated integrator hav­
ing rectangular pulse response. Note that this is a truncated 
( causal) version of the actual acausal impulse response, 
which would be a time-reversed step function at t. This ex­
ample points out the major problem with matched filters: 
they are usually not physically realizable. Fortunately, they 
possess one remarkable advantage: it is extraordinarily easy 
to compute the optimum power SIN obtained with matched 
filtering since it is simply9 

SIN=EI71, (6) 

where E is the signal energy (1) and 71 is the bilateral noise 
power density (W /Hz). Thus the matched filter is the stan­
dard against which an other filters can be judged. For power 
signals, the energy is 

(7) 

which reduces to a product if the power is constant, as for a 
step function signal. Thus, the power SIN increases with 
measurement time, as expected. 

Alternatively, the power SIN can be calculated directly 
since the mean signal power is given by Eq. (4), with x (t) 
the instantaneous signal power. The noise power is given by 

Pn = f:., 7lIH (fWdf= LX> 271iH(fWdf, (8) 

where IH(f) j2[=H*(f)H(f) 1 is the filter power trans­
fer function. For white noise, the noise power density is con­
stant, so it may be removed from the noise power integral, 
yielding 

958 Rev. Scl.lnstrum., Vol. 57, No.5, May 1986 

Thus, the noise power is the product of the constant (unila­
teral) noise power density, the maximum power gain, and 
the (equivalent) noise bandwidth. Hence, the noise band­
width is defined as 

(10) 

and is simply the bandwidth an ideal ("brickwaH") LPF 
would have if the ideal filter had equal maximum gain and 
equal area under its power transfer function. As an example, 
consider the gated integrator transfer function 

(11 ) 

where sinc(x) =sin (1TX) I1rx, ra is the aperture (integra­
tion) time, and 1'; is the integration time constant. Then 

IH(f)jZ==H*(f)H(f) = (ralr; )2sinc2 fra, (12) 

with maximum power gain at dc. Substituting Eq. (12) into 
( 10) yields B n = 1/21' a' Since signal power and noise power 
density are equally affected by the maximum power gain of 
(ral'T; )2, it follows that the power SIN increases with 1'0' as 
before. Note that although Bn approaches 0 as 'Ta goes to 
infinity (the continuous integrator limit), the product of the 
dc power gain and noise bandwidth increases as 'To, so that 
noise power increases as 'To' Signal power increases as ~, so 
the power SIN increases as 'T a . 

However, the continuous integrator has a pole at the 
origin and, therefore, is only marginally stable. The gated 
and running integrators have optimal impulse response and 
exactly settle at the end of the integration period,lO but the 
(stable) transform is transcendental. Since the transfer 
functions are not rational fractions, they cannot be imple­
mented with time-invariant, lumped parameter circuits. II 

Unfortunately, it is difficult or cumbersome to imple­
ment integration LPFs because continuous integrators may 
give unbounded output for bounded input, gated integrators 
require external timing for readout and reset, and running 
integrators are impractical for audio and subaudio frequen­
cies because of the difficulty in implementing long analog 
delays. Serial analog delay (SAD) lines and transversal 
fiJ.ters l2 do not provide a wholly satisfactory solution to the 
running integrator design problem, although it is quite easy 
to devise a digital running integrator, e.g., the Oriel 76000 
signal processor. However, such digital filters must be pre­
ceded by analog antialiasing filters,13 unless either the signal 
and noise are already bandlimited 14 (so that the white-noise 
assumption is violated and a preceding stage is serving as a 
de facto antialiasing filter), or the SIN is so high that the 
noise is below the digitization error (quantization noise) of 
the succeeding AID converter, in which case filtering is un­
necessary. Oversampling, i.e., use ofsampling rates much in 
excess of the Nyquist rate, avoids the aliasing problem, but 
may not always be possible because of hardware or software 
restrictions. 
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Thus, antialiasing filters are always necessary. Since 
noise aliasing cannot be removed by clever digital postpro­
cessing, there can be no digital Lazarus filter, i.e., a digital 
resurrection of a signal mortally harmed by inept analog 
preprocessing. As noted above, it is also harder to design a 
filter which removes noise without causing signal distor­
tion 15 and the antialiasing filter is particularly hard to design 
since it must be linear phase and have superb frequency do­
main characteristics. 16 Thus, it is easier to design a good 
analog LPF than it is to design a good digital filter with 
proper antialiasing filter. Any meaningful discussion of the 
relative merits of analog versus digital filters must address 
the antialiasing filter problem. 

t lOW-PASS FitTER FIGURES OF MERIT 

Given the difficulties in using integrators (continuous, 
gated, or running) as averaging LPFs, it is natural to wonder 
how well an ordinary RC LPF would perform. For the case 
of a rectangular signal pulse of duration 7" a' it is wen known 
that the optimum RC value is 0.7959 7"a and the (time-de­
pendent) optimum power SIN is 81.45% of that attainable 
with matched filtering. 17 However, theRC LPF is primitive, 
offering poor performance in both the time and frequency 
domains. It is known, for example, that a good LPF is more 
more than twice as fast as the RC LPF for equal noise band­
widths. 10 Note that it is unfair to compare LPFs of different 
type or order on the basis of arbitrary measures such as equal 
signal bandwidths or time constants because, with equal 
white-noise power density inputs, the mean-square output 
fluctuations would be unequal. In other words, the mean 
output noise powers would be different. Furthermore, the 
impulse response of a real LPF cannot abruptly change, as in 
the gated integrator, so the unit step response is only ap­
proached asymptotically. Hence, the LPF output, for dc in­
put, is not a simple ramp (sometimes mistakenly said to be 
"linear" output lS

) except, as Eg. (5) shows, in the integra­
tion case. 

There are two conditions to be satisfied for a fair com­
parison of LPFs. First, the LPFs must have equal dc gains 

H(O) = f: '" h(t)dt = Sa'" h(t)dt 

= lim ('U(t - 7")h(7")d7", 
t--oo)o 

(13) 

where hU) is causal. The first equality follows from the de­
finition of the Fourier transform, with OJ = o. It is conven­
ient to let H(O) = I, which is equivalent to specifying nor­
malized impUlse responses and equal ultimate unit step 
responses. 

However, it is not possible to wait forever for settling to 
occur, so a settling tolerance must be adopted. As in the case 
for operational amplifiers, we define the settling time as the 
time required for the filter output to first reach and stay 
within a specified symmetrical error band about the ultimate 
(steady-state) value of unity, when the input is a unit step 
function at t = o. An arbitrary, but reasonable error toler­
ance is ± 1 % since this corresponds to the common practice 
of taking measurements every 4-5 time constants. For a 
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first-order RC LPF, 1 % settling occurs at about 4.605 RC. 
An error tolerance smaller than 1 % gives better measure­
ment resolution at the expense oflonger measurement time, 
while larger error tolerances trade accuracy for speed. Thus, 
the choice is arbitrary. This will be discussed in more detail 
later. The important point is that a filter with small time 
constant settles quickly, but does not reduce noise very wel1. 
Therefore, another condition is necessary. 

The second condition is that the LPFs must have equal 
impulse response energies 

(14) 

(15) 

where E/ is the impulse response energy ,19 B, is the spectral 
bandwidth, and Rh (0) is the autocorrelation function at 
zero delay. Parseval's theorem provides the connection 
betweenE, andBs. NotethatBs is the bilateral version of Bn. 
The equivalent bilateral notion for the LPF time autocorre­
lation function is the autocorrelation time, i.e., the autocor­
relation time is the integral from - 00 to + 00 of the auto­
correlation function with respect to 7", divided by Rh (0). For 
all LPF filters without passband ripple, the product of the 
spectral bandwidth and autocorrelation time is unity20 be­
cause the maximum power gain is at dc, so it is convenient to 
specify 

H(O)=l-Hmax (OJ). (16) 

Thus, the second condition is equivalent to specifying that 
LPFs to be compared must have equal noise bandwidths, 
i.e., for equal white-noise power densities as inputs, they 
have equal output noise powers. 

Therefore, a satisfactory figure of merit for low-pass 
filters for averaging purposes is the 1 % settling time-noise 
bandwidth product, which must be minimized. The gated 
integrator has the best figure of merit.1O Other filters can 
merely approach its product of 0.495 ( = 0.99 7"a X 1/27"a). 

As previously mentioned, other settling time criteria 
can be adopted including settling to 0.1 % and settling to the 
AID rms quantization noise.21 Other "bandwidth" criteria 
include I-Hz or l-radls spectral bandwidth, I-radls noise 
bandwidth, or l-s autocorrelation time. The most conven­
ient choice for normalization purposes is I-Hz noise band­
width. Therefore, LPFs normalized to 1-Hz noise band­
width may be fairly compared on the basis of 1 % settling 
times if it is recognized that changes in the settling tolerance 
may drastically alter the relative performances of various 
LPFs under consideration. This will be discussed later. 
Note, however, that ordinary (arbitrary) engineering mea­
sures such as "rise time," "FWHM," signal bandwidth, and 
so on, are of no intrinsic merit and cannot be used to fairly 
compare filter performance. Indeed, the use of such mea­
sures may lead to seemingly contradictory comparisons of 
filters. 22 It is essential that a figure of merit be valid; it is not 
essential that it be easily defined or measured. In the present 
case, the figure of merit is all three. 
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U. ANAL Y"nCAl RESULTS 

All cascaded, nth order filters are assumed to consist of 
n, buffered, equal time constant, first-order filters. Noise 
bandwidths are obtained from Eq. ( 10) with the appropriate 
power transfer function while step responses are obtained by 
integration [Eq. (5) 1 of the impulse responses obtained by 
inverse transformation of the nth order transfer functions. 

The choise of filters to be examined is determined by 
importance, usefulness, and tractability. The synchronous 
LPF is both primitive and ubiquitous and is found in virtual­
ly all commercial lock-in amplifiers and boxcar averagers. 
The cascaded, gated integrator LPF is analytically tractable 
while the "brickwall" and Gaussian LPFs are the ideal fre­
quency and time domain LPFs. The latter two are examined 
with their acausal step responses further idealized, i.e., 
piecewise linearly approximated in accordance with Su's cri­
terion. 23 As will be seen, the ideal time domain filter is better 
than the ideal frequency domain filter, for averaging pur­
poses, by about 50%. Since ideal filters cannot be construct­
ed, their figures of merit serve as benchmarks against which 
actual LPF performance can be gauged. 
CASCADED RC LPFs: The transfer function for the nth 
order synchronous filter is, where r==RC, 

1 _ 
H(p) =H(s7) = =7 "--- (17) 

(1 + S7)" (s + 1/7)" 

The inverse Laplace transform of Eq. (17) yields 

t"-1 
h(t) = 7-"---e- tlrU(t) (18) 

I"(n) , 

where r(n) is the gamma function. Substitution ofEq. (18) 
into (5), and simplification, gives the step response 

y(t) = 1 - e-t1r"i
l .l(i)'. 

,=0 r! 7 
(19) 

From Eq. (17), the noise bandwidth is 

a
2"1"" dw B -- (20) 

" - 21T 0 (w 2 + a2 )" ' 

where a=lh and the integral in Eq. (20) is24 

(00 dx (2n - 3)!! 1T (21) 
Jo (x2 + a2 )" - 2(2n - 2)!! a2" - I' 

with (n + l)!!=(n + 1) (n - l)(n - 3) ... (1) and O!! = 1. 
Then the following relations25 

(2n)!! = 2"n! = 2n(2n - 2)!!, (22) 

(2n + O!! = (2n + 1)! = (2n + l)(2n - 1)(2n - 3)!!, 
2"n! 

(23) 

( - 1 )!! = 1, (24) 

together with Eqs. (20) and (21) yieJ.d 

B = (2n)! 
" 22

" + 1 (2n - l)(n - l)!n!RC 

(2n - 2)! 

22"[(n -l)!fRC' 
(25) 

Slightly incorrect B" expressions are given in several refer­
ences26

•
27 while a completely wrong expression is given by 

Moore et al.28 The signal bandwidth ( - 3 dB) is obtained 
by setting the power transfer function equal to ~, giving 
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(26) 

The bandwidth of a cascade of filters is often incorrectly 
given. It is easy to show that 

1im~ =! (....!!-)1I2 ~ 1.064467. (27) 
"-'" B In 2 

CASCADED, SYNCHRONIZED, GATED INTEGRA­
TORS: The transfer function of n cascaded, synchronized, 
gated integrators, with equa17a and 7; values, is 

H() (
7a)". "f -iw"r/2 

W = - smc tae . 
7; 

(28) 

The impulse response is the inverse Fourier transform ofEq. 
(28) 

h(t) = _1_ (7a)"J'" (Sin w7a!2 )"e - iw"r/2eiwtdw, (29) 
21T 7; - '" w7a/2 

sinceH(w) is stable ands = iw. Assuming unity de gain and 
using exp( - ix) = cos(x) - i sin(x) gives 

h(t) =--1 2f"" (SinW7a/2)" 
2ff 70 - '" W7a /2 

[ ( n7a) (n7a)] (W7a) X cos W 2 - t - i sin W 2 - t d -2- . 

(30) 

But the first factor in the integrand is even with respect to W 

while the cosine term is also even and the sine term is odd. 
Thus 

2 i""(SinW7a/2)" (
n7a )d(W7a) h(t) =-- cosw --t --. 

1T7a 0 w7a/2 2 2 
(31) 

Note that cos [ w(n7a/2 - t)] is also even about t = n7a/2. 
Then, using the tabulated integral,29 the result for 
0<t<nTa/2 is 

h(t)= n 
2"-1 Ta 

k< (" + m)12 ( _ l)k [2(n - k - t 17 ) J" - I 

X L a 
k=0 k !(n - k)! 

(32) 

Since h(t) is symmetrical about t = nTa/2, causality impJ.ies 
that h(t) = 0 for t>nTa' Thus the unit step response is 

yet) = f<"\(T)dT, (33) 

with y(n7a ) = 1. Another implication of the symmetry of 
h(t) about t = n7a /2 follows from the observation that cas­
caded, noninverting integrators cannot exhibit initial under­
shoot with positive input. Thus, they also cannot exhibit 
overshoot as the steady state is approached. Therefore, the 
step response is monotonic and the 1 % settling time is sim­
ply the 100% response time (nTa ) minus the 1 % response 
time. By expansion of Eq. (32), it is seen that the nth order 
impulse response, forO<t<n7a/2, is lha times the nth term 
in the (MacLaurin) expansion of exp (t 17 a ). It is then easy 
to show that the 1 % settling time is 

(34) 
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The noise bandWidth is obtained by using the tabulated inte­
gral30 

rOOO(Sinxx)n sin anx dx = !!...(l ___ 1_ 
Jo x 2 2n - I n! 

k< (n/2)( I - a) [n] n) 
X k~O ( - I)k k (n - an - 2k) , (35) 

whereais real, n;;;.l, [n = n(n - 1 ) ... (n - k + l)/k!, and 
[3] = 1. Letting a= lin, and noting that the upper summa­
tion limit is 0 if (1 - 1/ n ) n/2 is zero, yields 

1 ( 1 k«n-I)/2 k[:n] 
E =- 1--- L (-1) 

n 21"" r-In! k=O k 

(36) 

where n = 1 gives En = 1/2r", as expected. For m stages, n 
in Eqs. (35) and (36) is 2m - 1. 
CASCADED, IDEAL (FREQUENCY DOMAIN) LPFs: 
The signal and noise bandwidths of a cascade of ideal 
("brickwall") LPFs are the single-stage bandwidth [Eq. 
(8) ] while the phase is the sum of the phases, possibly zero. 
Since the ideal LPF has acausal impulse response and step 
response, it may be further idealized, for comparison pur­
poses, by replacing the step response with a piecewise linear 
approximation, with slopes and domains given by31 

o for t<O 

idealized step 

= 2Bt for O,t,1/2B (37) 

response slopes 
o for 1/2E <t 

where the nonzero slope is the maximum slope. By coinci­
dence, the settling time of such an idealized filter is precisely 
equal to that of the gated or running integrator. 
CASCADED, GA USSIAN LPFs: The transfer function of a 
Gaussian LPF is 

H(!) =H(O)e- (In2l2)(fIB)'e- iwt., (38) 

where E is the - 3-dB bandwidth. Gaussian filters are ideal 
in the time domain32 and exhibit no overshoot. Like the ideal 
LPF, they are not physically realizable. For n cascaded 
Gaussian filters, each with unity dc gain and equal signa:! 
bandwidths, the power transfer function is 

IH(!) 12 = e- nln2(fIB)2 = (e -ln2)n(fIB)'. (39) 

The signal bandwidth. in terms of E, is obtained by letting 
Eq. (39) = 112, giving 

!_ 3 dB = n - (1/2lE, (40) 

where n is the number of cascaded filters. The noise band­
width is given by substituting Eq. (39) into (10) 

En = (1!2)(1Tiln2)1/2n -(1I2)E, 

so that EJ / _ 3 dB is independent of n 

En 1 ( 1T )112 ---=---
!-3dB 2 In2 
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(41) 

(42) 

as in Eq. (27). This ratio is incorrectly given33 as 1.34. 
The step response of the Gaussian filter is acausal so the 

step response is further idealized with the nonzero slope giv­
en by the maximum slope34 

o for t<O 
idealized step 

( 
21T )112 1 (In 2 )1/2 -- Bt for O,t<- --
In 2 B 21T = 

1 (In 2 )112 o for - -- <t 
B 21T 

response slopes 

(43) 

Since the cascaded Gaussian filter is also Gaussian, its rise­
time-bandwidth product must be independent of n. Then Eq. 
( 40) or (41) implies that the 1 % settling time is V n times 
greater than the single stage 1 % settling time. 

m. NUMERICAL RESULTS 

A real, causal, low-pass filter has a voltage transfer func­
tion given as the ratio, a proper fraction, of two polynomials 
in the Laplace transform variable p 

kN(P) 
D(p)' 

(44) 

where i = the square root of - 1, w is the angular frequency 
(rad/s), s = iw,p = sr, N( p) is the numerator polynomial, 
and D( p) is the denominator polynomial. Roots of D( p) 
and N ( p) are called poles and zeros, respectively. The dc 
gain is kar/bo. Factoring out amlbn gives an alternate 
expression for H ( p) 

(ar/am) + (a/am )p + ... + pm 
H(p) =K , 

(br/bn ) + (b/bn)p + ... + pn 
(45) 

whereK is the value in Eq. (44) times am Ibn and is called 
the (numerator) scale factor. The expression for H( p) in 
Eq. (45) may be factored to yield the following form: 

(P+ZI)(P+Z2)···(p+Zm) 
H(p) =K . (46) 

(p+PI)(P+P1)···(p+Pn ) 

A computationally convenient alternative form of Eq. (44) 
is the nested form: 

ao + p(al + p( ... + pam ) ... ) 
H(p)=k . (47) 

bo + p(b l + p( ... + pbn ) ... ) 

All of these expressions are in widespread use so some care is 
needed to avoid confusion. 

A proper comparison of LPFs for averaging purposes 
must involve a renormalization of the poles, zeros (if any), 
and scale factors of the LPFs to be compared. This is quite 
easy, since these quantities, which completely determine the 
filter transfer function, are extensively tabulated for a var­
iety of filters, and the normalization is usually to I-radls 
signal bandwidth, I-s time constant, or I-rad signal band­
width-time constant product. It is only necessary to convert 
the poles and zeros to rectangular form and calculate the 
filter noise bandwidth, then renormalize the poles, zeros, 
and scale factor to I-Hz noise bandwidth. It should also be 
noted that poles and zeros may be given in a variety of non­
rectangular forms such as undamped natural frequencies 
and damping ratios. 35 
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In addition to the variety of explicit transfer function 
normalizations employed, it is common to implicitly nor­
malize to 'T = 1 s, i.e., p and s are used interchangably. For 
some filters, e.g., Bessel filters, this may be the only normali­
zation. In any event, it is best to calculate both OJ _ 3 dB'T (the 
signal bandwidth-time constant product) and OJn'T (the 
noise bandwidth-time constant product) and then use the 
information so obtained to renormalize to I-Hz noise band­
width. In the present case, OJ _ 3 dB'T and OJn 'T were calculated 
using a short Hewlett-Packard HP-15C calculator program 
using the transfer function in nested form [Eq. (47)]. Fig­
ure 1 shows the transfer function magnitudes vs OJ'T for the 
five best LPFs and for the third-order Bessel LPF. 

The calculator was used because it directly calculates 
with complex numbers and polynomials and has built-in 
solve and integrate functions which make the necessary cal­
culations almost trivial. To check the accuracy of the nu­
merical integrations, the numerical noise bandwidth-time 
constant products were first obtained and then the analytic 
expressions were derived (if possible). For the third-order 
LPFs, which comprise the majority of filters in this study, 
the analytic expression given by PickuplO was used to check 
the numerical results. In no case was the error greater than 
0.1 % if care was taken to properly specify the upper integra­
tion limit. For the all pole LPFs, the upper limit was selected 
so that the power transfer function was <: 10-4 for a specified 
integration precision oflO- 3

. For the (2,3) LPFs, the upper 
limit was selected so that the power transfer function was 
<; 10-8

, i.e., - 80 dB. In addition, the integration interval 
was subdivided and several integrals were summed to deter­
mine whether a single numerical integration was sufficiently 
accurate to be trustworthy. Such subdivision was found to be 
beneficial primarily for filters with zeros. It should also be 
noted that the analytic approach used by Pickup, based on 
spectral. factorization tables36

, is essentially useless for high­
order filters such as the tenth-order Besse! filter. Also, it 
would be difficult to handle transitional filters, such as the 
transitional Butterworth-Thompson filters, by the analytic 

10-2 

1 

;; 

10-3 

FIG. I. Transfer function magnitudes vs orr for the Pickup 1% (a), modi­
fied Sheingold (b), Grimbleby (c), Jess and SchUssler 32 (d), Jess and 
SchUssler 30 (e), and Bessel (f) low-pass filters. 
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approach. The Paynter filter, described as the "optimum" 
analog approach to running integration,37 is the "mean," 
third-order, transitional Butterworth-Thompson filter. 

Having obtained the transfer function normalized to 1-
Hz noise bandwidth, the time-domain response to a unit step 
input is obtained by taking the inverse Laplace transform of 
H( p)/s, where the factor of lis is the Laplace transform ofa 
unit step function. A simple BASIC program to perform the 
inverse transform numerically, on factored transfer func­
tions [Eq. (46) ], has been published.38 From data generated 
in the inverse transform, which requires as much as 10 min 
for the tenth-order Bessel filter, it is possible to plot the unit 
step response and determine (by, e.g., linear interpolation) 
the settling time of the filter. Figure 2 shows time domain 
results for the five best LPFs and for the third-order Bessel 
LPF. Note that restricting the settling tolerance to, e.g., 
± 0.5% causes the Grimbleby and Bessel LPFs to be the 

best of the six responses shown. The other four LPFs, having 
been optimized for 1 % settling, become inferior. It should 
also be observed that the specific noise bandwidth normali­
zation used does not alter the relative performance of the 
LPFs, but this is not the case for the settling tolerance. 

Table I gives the rectangular form poles, zeros, scale 
factors, normalizations, and references for the third-order 
filters evaluated numerically. Bessel filter poles and gains are 
taken from Weinberg39 andOJ"/OJ _ 3 dB ratios for n = 2,4,6, 
and 8 are in agreement with graphical resul.ts.40 The Paynter 
filter is from Beauchamp.41 From the numerically derived 
OJn'T values and the Bn ==l-Hz definition, 'Tis obtained. Note 
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FIG. 2. (A) The unit step response of the 6 filters in Fig. I. Notation as in 
Fig. I. (B) The ± I % settling region of (A). 
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TABLE I. Third-order low-pass filter scale factors, poles, and zeros. 

Name Scale factor Poles Zeros Norm Reference 

Gaussian approximant 4.196 1.5116, 1.375 ± 0.941 Ii r,cu _ 3 dB [27, p.252] 
Guillemin 2.00 1.0000, 1.0000 ± I.ooooi l' [8, p.141] 
Bessel 15.00 2.3222, 1.8389 ± I. 7544i l' [39, p.500] 
Least-squares delay 1.962 1.043, 0.853 ± 1.074i r,w _ 3 dB [9, p.129] 
Jess & Schiissler 30 0.00988 0.1617,0.1316 ± 0.2092i '1,(1) -40 dB [27, p.299] 
Jess & Schussler 32 0.0297 0.2575,0.2041 ± 0.3335i o ± 1.I521i r,ltJ _ 40 dB [27, p.299] 
Grimbleby 4.000 9.2887,7.3556 ± 7.0175i O± 15.492i 1",B. [10, p.604) 
Pickup 1% 3.971 6.5122,4.7134 ± 8.6908i O± 12.661i 1",B. [10, p.604] 
Montonic-L 0.577 0.6203,0.3452 ± 0.9008i r,W_J dB [27,p.229) 
Parabolic b = 1.25 1.239 0.7909,0.6259 ± 1.084i T,llJ _ 3 dB [27, p.26O) 
Parabolic b = 3 1.394 0.7771,0.6696 ± 1.I6Oi r,W_3 dB [27, p.26O) 
Catenary 1.177 0.8027,0.6056 ± 1.049i r,lt)_3 dB [27, p.264) 
Elliptic con tour 2.183 1.2044, 0.8975 ± l.oo34i r,(J)_3 dB [27, p.268] 
Linear phase minimlU 11.64 1. 8 136, 1.4394 ± 2.0846i l' [27, p.306) 
Butterworth 1.000 1.0000,0.5000 ± 0.866Oi 'i,W_JdB'T [39, p.495] 
Paynter 1.000 0.7677,0.5487 ± l.ooli aJ_3 dO l' [41, p.141] 
2,3-Pade approximant 3.000 3.6378,2.6811 ± 3.0504i - 4.000 ± 2.oooi l' [27,p.311] 

that the gain must be divided by r" - m, where n is the de­
nominator order and rn is the numerator order. 

poles, and zeros (if any), for the filters in Table n. We leave 
this to the interested reader. 

Table H shows the 1-Hz noise bandwidth normalized 
poles, zeros, and scale factors of the filters in Table l. In 
addition, the 1 % settling times are also shown, calculated as 
described above. Evidently, filters below the modified Shein­
gold have mediocre time domain performance, i.e., substan­
tial overshoot by the 1 % settling criterion, and are thus not 
usable as averaging filters. In particular, the Paynter filter, 
with 2.9% overshoot, offers poor performance. However, if 
the required measurement resolution is such that the 1 % 
settling tolerance must be replaced by another settling toler­
ance, then the relative ordering of the filters in Table n is 
changed. Since the step response data sets have already been 
generated, it is easy to :reexamine them for the settling times 
corresponding to alternate settling tolerances. It is also easy 
to regenerate the unit step responses from the scale factors, 

Even if the settling time criterion was replaced by a sim­
ple response time criterion. such as 99% response. these filters 
would be unable to respond in less than 0.6 So The only un­
suitable filter which can be slightly modified to achieve 1 % 
settling in under 0.6 s is the Sheingold filter42 which has 
0.5% overshoot and 1.1 % undershoot. A slight reduction 
(0.88 %) in the real part of the complex pole and renormal­
ization to l-Hz noise bandwidth, gives 1.015% overshoot, 
0.7% undershoot, and 1.004 dc gain-slightly violating the 
first LPF comparison condition. As may be seen from the 
data in Table II, the modified Sheingold and Pickup 1 % 
filters have quite similar transfer functions and performance 
with the Pickup filter having 1 % overshoot, 1.015% under­
shoot, and faster ultimate settling. These filters are easily 
and inexpensively constructed in non tunable form. 

TABLE II. Third-order low-pass filter gains, poles, zeros, and I % settling times for 1.000 ± 0.0005 Hz noise bandwidth normalization. 

Name 

Gaussian approximant 
Guillemin 
Bessel 
Least-squares delay 
Jess & Schiissler 30 
Jess & Schiissler 32 
Grimbleby 
Pickup 1% 
Modified Sheingoid 
Monotonic-L 
Parabolic b = 1.25 
Parabolic b = 3 
Catenary 
Elliptic contour 
Linear phase minimlU 
Butterworth 
Paynter 
2,3-Pade approximant 

Scale 

factor 

764.8 
592.6 
555.6 
425.4 
340.9 

0.6519 
4.000 
3.971 
3.961 

148.8 
309.1 
339.3 
294.4 
459.6 
362.9 
216 
266.5 

2.933 
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Poles 

- a, -/3± ir 

8.571,7.795 ± 5.366i 
6.667,6.667 ± 6.667i 
7.741,6.130 ± 5.848i 
6.266,5.125 ± 6.452i 
5.265, 4.285 ± 6.81 Ii 
5.658,4.485 ± 7.328i 
9.289,7.356 ± 7.018i 
6.512,4.713 ± 8.691i 
6.338,4.712 ± 8.823; 
3.947,2.197 ± 5.733i 
4.979, 3.940 ± 6.824i 
4.852,4.181 ± 7.242i 
5.057,3.815 ± 6.607i 
7.165,5.339 ± 5.970; 
5.708,4.530 ± 6.561i 
6.000,3.000 ± 5.196i 
4.940,3.531 ± 6.440i 
3.557,2.622 ± 2.983i 

Zeros 

-Z, ± izz 

o ± 25.32; 
o ± 15.49i 
o ± 12.66i 
o ± 12.68i 

- 3.911 ± 1.955i 

Signal averaging 

t l % 

(s) 

0.703 
0.699 
0.645 
0.631 
0.628 
0.594 
0.588 
0.550 
0.550 
1.59 
1.22 
1.17 
1.24 
0.900 
0.832 
1.57 
1.31 
2.16 

B~ 
(Hz) 

1.462 
1.449 
1.413 
1.393 
1.395 
1.380 
1.499 
1.535 
1.532 
1.213 
1.379 
1.421 
1.369 
1.384 
1.382 
1.219 
1.354 
1.517 
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Examples of active RC realization of the Pickup 0.1 % 
and Sheingold LPFs are given in the appropriate references. 
The authors are not sufficiently versed in filter circuit design 
praxis to suggest optimum circuitry for the Pickup 1 % and 
modified Sheingold LPFs. Our goa! is to point out the intrin­
sically significant design goal. 

Figure 3 shows the 1 % settling times of the synchro­
nous, integrator, ideal, and Gaussian LPFs. Also shown are 
the Bessel LPF results obtained numerically. Clearly, the 
only advantage of the synchronous filter is its simplicity 
(i.e., cheapness). Note that common filters such as elliptic 
and Chebyshev filters are not shown in Fig. 3 because their 
time domain behavior is atrocious.43 Other filters omitted 
for the same reason include uItraspherical, inverse Cheby­
shev, modified inverse Chebyshev, and Paynter LPFs.44 

Filters for which too little data is available to make a com­
parison include equiripple delay, prolate, least-squares mag­
nitude, Halpern, and Aronhime and Budak LPFs.44 Except­
ing the Jess and Schussler filters, none of the numerically 
constrained LPFs given by Lindquist had acceptable step 
response overshoot.45 

Figure 4 shows the settling time performance of r~PFs 
within the dotted box in Fig. 3. Note that best performance is 
achieved with filters having zeros and that the Jess and 
Schussler LPFs, though optimized for minimum step re­
sponse rise-time stop band-edge product, are inferior to the 
Pickup and modified Sheingold LPFs for averaging pur­
poses. The reason is simple: an arbitrary rise-time-band­
width figure of merit was "optimized,,46 rather than the set­
tling time-noise bandwidth product. 

We must emphasize again that the figure of merit, of a 
low-pass filter intended for averaging purposes, is the settling 
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FIG. 3. Settling time (I %) vs filter order at I·Hznoise bandwidth for sever­
al types of low-pass filter. 
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time-noise bandwidth product. The settling tolerance is deter­
mined by the required measurement resolution. With the rea­
sonable, but arbitrary, assumption of 1 % measurement reso­
lution, the figure of merit is the 1 % settling time-noise 
bandwidth product and Figs. 3 and 4 give relative filter per­
formances. For measurement resolutions other than 1 %, the 
rel.ative performances of the various LPFs is altered and 
Figs. 3 and 4 do not apply. As mentioned earlier, the third­
order Bessel LPF is a good overall choice if slowly varying ac 
signals must also be acquired. 

It is important to realize that filters of order higher than 
three do not provide superior performance. In part, this is 
due to the white-noise assumption because the faster roll off 
of higher order filters offers no advantage when interferences 
are absent. The noise bandwidth normalization completely 
suffices under these circumstances. 

If, however, the noise power spectrum is nonwhite, the 
noise bandwidth concept must be modified. For example, 
Mossotti47 defines the "equivalent number of degrees offree­
dom," denoted by 'TIe' for the nonwhite noise case. This pro­
vides a measure of the number of independent measurements 
that can be made in a given measurement period. Expressing 
'TIe in Hz, rather than units of liT (the Nyquist cointerval), 
then gives47 

~=B' = (fO'P(f)df)2 
2T " fO'p 2(f)df 

(f(;IH(fWdf)2 

f(;IH(f)1 4df ' 
(48) 

where B ~ is the effective bandwidth and is given in Table II 
for comparison. Note that B ~ is identical to a proposed new 
effective noise bandwidth,48,49 a fact which derives from the 
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chi-squared distribution of output noise powers assumed in 
each case. 50 

IV. CONCLUSaONS 

As may be seen from Figs. 3 and 4, the 1 % settling time 
of the running integrator is 0.495 s since exact settling occurs 
in 0.5 s. The Pickup 1 % and modified Sheingold LPFs settle 
in 0.55 s which is only about 11 % higher. Furthermore, the 
Pickup 0.1 % LPF settles to 1 % in 0.60 s and to 0.1 % in 0.67 
s. 10 TheRC LPFsettles toO. 1 % in 1.73 s. Thus, there is little 
reason to use RC LPFs and, in particular, the first-order RC 
LPF, unless such use is practically unavoidable, as in lock-in 
amplifiers used in feedback systems.51 Otherwise, the use of 
synchronous LPFs in instruments such as lock-in amplifiers 
and boxcar integratorslaveragers should be avoided. At the 
very least, tunable third- or fourth-order Bessel filters, which 
are easily implemented with single integrated circuit "chips" 
such as the National Semiconductor MF-I0 switched ca­
pacitor filter,52 should be used. Practically, this means that 
the "time constant" on the instrument should be minimized 
and the (slightly filtered) output should then be processed 
by the "outboard" LPF. 

Tunable LPF designs as good as or better than the 
Pickup 1 % and modified Sheingold LPFs would be most 
useful because it is the noise reduction properties of the out­
put LPF and the al10tted measurement time which ultimate­
ly determines the detection limit (detectivity) of a tech­
nique. The detection limit is an important figure of merit for 
techniques and systems because it is an easily measured, in­
trinsic quantity that determines just how "sensitive" a tech­
nique is. Lowered detection limits are useful because they 
translate into reduced measurement times or results of high­
er quality, i.e., SIN, in fixed measurement time. In practice, 
the detection limit is just a small "protection factor," typi­
cally 1, 2, 3, or 6, times an appropriate "noise equivalent 
measure." Examples of noise equivalent measures include 
noise equivalent power (NEP), noise equivalent pressure, 
and noise equivalent concentration. Note that the noise equi­
valent measure is just that measure for which SIN = 1. 
Thus, for a white-noise-dominated situation, the noise may 
be indefinitely reduced at the expense of measurement time 
and comparisons of two, quite similar, detection proce­
dures53 may well be meaningless even if noise equivalent 
measures are used. 

A necessary condition for a valid comparison of similar 
systems is that the systems are properly designed: the domi­
nant noise is white, or whitened, by design and is known to be 
white by valid, experimental verification. More often than 
not, this condition is not strictly met; when it is, it is possible 
to compare the detection limits of the systems if both the 
protection factors and the noise bandwidths are equalized. 
In this regard, the comparison of infrared detector D" val­
ues54 is the appropriate parallel. Unfortunately, the detec­
tion limit definitions in common use are incomplete, like the 
infrared detector detectivity value, and most comparisons of 
systems are flawed for nonsubtle reasons. It is hoped that the 
results presented here will help correct the problem. 
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