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See text for remainder of the problem
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Problem 5.17. The enthalpy and Gibbs free energy, as defined in this section, give
special treatment to mechanical (compression-expansion) work, —P dV'. Analogous
quantities can be defined for other kinds of work, for instance, magnetic work.*
Consider the situation shown in Figure 5.7, where a long solenoid (N turns, total
length L) surrounds a magnetic specimen (perhaps a paramagnetic solid). If the
magnetic field inside the specimen is B and its total magnetic moment is M, then
we define an auxilliary field 7 (often called simply the magnetic field) by the
relation

i=Llp_

Ho
where pig is the “permeability of free space,” 47 x10~7 N/A%. Assuming cylindrical
symmetry, all vectors must point either left or right, so we can drop the ~ symbols
and agree that rightward is positive, leftward negative. From Ampere’s law, one
can also show that when the current in the wire is I, the  field inside the solenoid
is NI/L, whether or not the specimen is present.

<z

(a) Imagine making an infinitesimal change in the current in the wire, resulting

in infinitesimal changes in B, M, and H. Use Faraday’s law to show that

the work required (from the power supply) to accomplish this change is

Wiotal = VHdB. (Neglect the resistance of the wire.)

Rewrite the result of part (a) in terms of # and M, then subtract off the

work that would be required even if the specimen were not present. If

we define W, the work done on the system,! to be what’s left, show that

W = poH dM.

(c) What is the thermodynamic identity for this system? (Include magnetic
work but not mechanical work or particle flow.)

(d) How would you define analogues of the enthalpy and Gibbs free energy for
a magnetic system? (The Helmholtz free energy is defined in the same way
as for a mechanical system.) Derive the thermodynamic identities for each
of these quantities, and discuss their interpretations.

®
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Problem 5.23. By subtracting uN from U, H, F, or G, one can obtain four new
thermodynamic potentials. Of the four, the most useful is the grand free energy
(or grand potential),

(a)
(b)

(<)
(Q)

®=U-TS—pN.

Derive the thermodynamic identity for ®, and the related formulas for the
partial derivatives of ® with respect to T, V, and .

Prove that, for a system in thermal and diffusive equilibrium (with a reser-
voir that can supply both energy and particles), ® tends to decrease.

Prove that = —PV.

As a simple application, let the system be a single proton, which can be
“occupied” either by a single electron (making a hydrogen atom, with en-
ergy —13.6 eV) or by none (with energy zero). Neglect the excited states
of the atom and the two spin states of the electron, so that both the oc-
cupied and unoccupied states of the proton have zero entropy. Suppose
that this proton is in the atmosphere of the sun, a reservoir with a tem-
perature of 5800 K and an electron concentration of about 2 x 10'° per
cubic meter. Calculate ® for both the occupied and unoccupied states, to
determine which is more stable under these conditions. To compute the
chemical potential of the electrons, treat them as an ideal gas. At about
what temperature would the occupied and unoccupied states be equally
stable, for this value of the electron concentration? (As in Problem 5.20,
the prediction for such a small system is only a probabilistic one.)
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Problem 5.55. In this problem you will investigate the behavior of a van der
‘Waals fluid near the critical point. It is easiest to work in terms of reduced variables
throughout.

()

(b)

(c)

(4)
(e)

(f)

Expand the van der Waals equation in a Taylor series in (V — V¢), keeping
terms through order (V — Vc)?. Argue that, for T sufficiently close to T,
the term quadratic in (V — V;) becomes negligible compared to the others
and may be dropped.

The resulting expression for P(V) is antisymmetric about the point V = V.
Use this fact to find an approximate formula for the vapor pressure as a
function of temperature. (You may find it helpful to plot the isotherm.)
Evaluate the slope of the phase boundary, dP/dT, at the critical point.
Still working in the same limit, find an expression for the difference in
volume between the gas and liquid phases at the vapor pressure. You
should find (Vg—Vi) o (T.—T)?, where 3 is known as a critical exponent.
Experiments show that 8 has a universal value of about 1/3, but the van
der Waals model predicts a larger value.

Use the previous result to calculate the predicted latent heat of the trans-
formation as a function of temperature, and sketch this function.

The shape of the T = T¢ isotherm defines another critical exponent, called §:
(P = P:) « (V — V.)°. Calculate 6 in the van der Waals model. (Experi-
mental values of § are typically around 4 or 5.)

A third critical exponent describes the temperature dependence of the iso-

thermal compressibility,
r=_L1(8V
="v\er )y

This quantity diverges at the critical point, in proportion to a power of
(T'—T.) that in principle could differ depending on whether one approaches
the critical point from above or below. Therefore the critical exponents
and v are defined by the relations

(T-T)™" as T — Te from above,

o« .

(T =T)™" as T — T, from below.

Calculate « on both sides of the critical point in the van der Waals model,
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Problem 4.5. Prove directly (by calculating the heat taken in and the heat
expelled) that a Carnot engine using an ideal gas as the working substance has an
efficiency of 1 — T¢/Tj,.

Problem 4.6. To get more than an infinitesimal amount of work out of a Carnot
engine, we would have to keep the temperature of its working substance below
that of the hot reservoir and above that of the cold reservoir by non-infinitesimal
amounts. Consider, then, a Carnot cycle in which the working substance is at
temperature Tj,, as it absorbs heat from the hot reservoir, and at temperature
Tew as it expels heat to the cold reservoir. Under most circumstances the rates of
heat transfer will be directly proportional to the temperature differences:

O K@ -Th)  and &= KT T,

I've assumed here for simplicity that the constants of proportionality (K) are the
same for both of these processes. Let us also assume that both processes take the
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same amount of time, so the At’s are the same in both of these equations.®

(a) Assuming that no new entropy is created during the cycle except during
the two heat transfer processes, derive an equation that relates the four

temperatures T}, Tc, Thay, and Tew.

(b) Assuming that the time required for the two adiabatic steps is negligible,
write down an expression for the power (work per unit time) output of this
engine. Use the first and second laws to write the power entirely in terms
of the four temperatures (and the constant K), then eliminate Tew using

the result of part (a).
(c;

‘When the cost of building an engine is much greater than the cost of fuel

(as is often the case), it is desirable to optimize the engine for maximum
power output, not maximum efficiency. Show that, for fixed T}, and T,
the expression you found in part (b) has a maximum value at Thy, =
3(Th + VT, Te). (Hint: Youw'll have to solve a quadratic equation.) Find

the corresponding expression for Tew.

(d) Show that the efficiency of this engine is 1 — 1/Tc/T,. Evaluate this effi-
ciency numerically for a typical coal-fired steam turbine with T}, = 600°C
and Te = 25°C, and compare to the ideal Carnot efficiency for this tem-
perature range. Which value is closer to the actual efficiency, about 40%,

of a real coal-burning power plant?
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