PHYS 1220, Engineering Physics, Chapter 18 - Thermal Properties of Matter
 Instructor: TeYu Chien
 Department of Physics and Astronomy University of Wyoming

Goal of this chapter is to learn the thermal properties of gases and how to read phase diagram.

- I have 2.5 dozens of identical coins with total weight of 300 g . How much weight does one dozen of coins have? How much weight does one coin have?
- I have 2.5 moles of identical molecules with total weight of 300 g . How much weight does one mole of molecules have? How much weight does one molecule have?
- Confusing Notations (don't be confused):
- N : number of molecules
- n : number of moles
- N_{A} : Avogadro's number: 6.02×10^{23}. (Note: The concept of Avogadro's number (and mole) is very similar to "dozen". They all represent one particular number (dozen $=12$))
- M: molar mass (how much mass per mole)
- m : mass of ONE molecule
- $m_{\text {total }}$: total mass
- p: pressure
- P : momentum
- Molar mass and total mass
- $M=N_{A} m$
- $m_{\text {total }}=n M$
- Equations of state:
- Ideal gas: $p V=n R T$
- $\rho=\frac{p M}{R T}$
- $R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K} ; \quad R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}$
- Non-ideal gas (van der Waals): $\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$

- Kinetic-molecular model of an ideal gas (link between temperature and molecule kinetic energy) (link between microscopic molecules and macroscopic measurable properties)
- $K_{t r}=\frac{3}{2} n R T \quad\left(K_{t r}:\right.$ total kinetic energy due to translational motion, sum of all molecules)
- $\frac{1}{2} m\left(v^{2}\right)_{a v}=\frac{3}{2} k T \quad$ (average kinetic energy due to translational motion of a single molecule)
- $k=\frac{R}{N_{A}}=1.381 \times 10^{-23} \mathrm{~J} /$ molecule $\cdot K \quad$ (Boltzmann constant)
- $v_{r m s}=\sqrt{\frac{3 \mathrm{kT}}{m}}=\sqrt{\frac{3 \mathrm{RT}}{M}}$
- Heat Capacity
- $d K_{t r}=\frac{3}{2} n R d T$; $d Q=n C_{V} d T$
- $C_{\nu}=\frac{3}{2} R$ for ideal gas of point molecule ($C_{V}=\frac{\operatorname{dof}}{2} R$; dof: degrees of freedom) (each degree of freedom could have $\frac{1}{2} k T$ energy per atom)
- $C_{\nu}=\frac{5}{2} R$ for diatomic gas, including 2 rotational degrees of freedom and 3 translational degrees of freedom
- $C_{\nu}=\frac{6}{2} R=3 \mathrm{R}$ for ideal monatomic solid, each atom has 3 translational degrees of freedom (kinetic energy), and 3 vibrational degree of freedom (potential energy)
- $C_{V}=\frac{7}{2} R \quad$ for diatomic gas, including 2 rotational degrees of freedom, 3 translational degrees of freedom, and

- Molecular speed distribution
- Basic statistics:
- Distribution function (similar to probability function)
- $f(v)$ means "the probability of finding the particle with speed v "
- $\int_{0}^{\infty} f(v) d v=1 \quad$ (sum of all probability equal to 1)
- $v_{a v}=\int_{0}^{\infty} v f(v) d v$
- $\left(v^{2}\right)_{a v}=\int_{0}^{\infty} v^{2} f(v) d v$
- Maxwell-Boltzmann distribution function (for classical particles)
- $f(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k T} \quad$ (distribution function)
- $v_{m p}=\sqrt{\frac{2 \mathrm{kT}}{m}} \quad$ (most probable speed)
- $v_{a v}=\sqrt{\frac{8 \mathrm{kT}}{\pi m}} \quad$ (average speed)
- $v_{r m s}=\sqrt{\frac{3 \mathrm{kT}}{m}} \quad$ (root-mean-square speed)

- Phase diagram of matters

Math Preview for Chapter 19:

- integration

Questions to think about for Chapter 19:

- Heat is one kind of energy, so is work. If a system gains heat and perform work to the surrounding of the system, how would the temperature of the system change? Increase or decrease?

