PHYS 1220, Engineering Physics, Chapter 23 - Electric Potential Instructor: TeYu Chien
 Department of Physics and Astronomy University of Wyoming

Goal of this chapter is to teach you what is Electric Potential and how to use it to calculate Electric field

- Electric potential energy change: defined as $\Delta U=-W$, where W is the work done by conservative force (here, electric force).
- In an uniform field

- Electric force for a charge $q: \vec{F}=q \vec{E}$. The work done by this electric field when the charge q moves from a to b is: $W_{a b}=\int_{a}^{b} \vec{F} \cdot d \vec{l}=q|\vec{E}|\left(y_{a}-y_{b}\right)$. So, the electric potential energy change is defined as: $\quad \Delta U=-W_{a b}=q|\vec{E}| y_{b}-q|\vec{E}| y_{a}=U_{b}-U_{a}$. Thus, the electric potential energy: $U=q|\vec{E}| y$
- This is very similar to the same procedure to define gravitational potential energy: $U=m \vec{g} y$
- Electric potential energy of two point charge:

- Electric force between the two charges: $\vec{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r}$. The work done by this electric field when their separation changes from r_{a} to r_{b} is:

$$
W_{a b}=\int_{a}^{b} \vec{F} \cdot d \vec{r}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right) . \text { So, the electric potential energy change is defined }
$$

as: $\Delta U=-W_{a b}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\left(\frac{1}{r_{b}}-\frac{1}{r_{a}}\right)=U_{b}-U_{a}$. Thus, the electric potential energy:

$$
U=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r}
$$

- This is very similar to the same procedure to define gravitational potential energy: $U=-G \frac{m_{1} m_{2}}{r}$

DO Example 23.2 (page 760)

- Electric potential energy with several point charges.
- Since U is a scalar, you can just add all contribution together.

- The total electric potential energy in above system is:

$$
U=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{1} q_{4}}{r_{14}}+\frac{q_{2} q_{3}}{r_{23}}+\frac{q_{2} q_{4}}{r_{24}}+\frac{q_{3} q_{4}}{r_{34}}\right)=\frac{1}{4 \pi \epsilon_{0}} \sum_{i<j} \frac{q_{i} q_{j}}{r_{i j}}
$$

- Again, in many cases, we want to know when we put one testing charge q in a system, what will that charge acts/feels. Similar to the reason we defined the electric field, now we define Electric Potential as: the potential energy per unit charge.

$$
V=\frac{U}{q_{0}}
$$

- The unit of the electric potential is volt.

$$
1 \hat{V}=1 \text { volt }=1 \mathrm{~J} / \mathrm{C}=1 \text { joule } / \text { coulomb }
$$

- Electric potential for various situations (remember that you are using a testing charge q_{0} to figure out the electric potential.):
- Electric potential due to a point charge:

$$
V=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}
$$

- Electric potential due to a collection of point charges:

$$
V=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}}
$$

- Electric potential due to a continuous distribution of charges:

$$
V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r}
$$

- What is the relationship among \vec{F}, \vec{E}, U, and V ?

$$
\vec{E}=\frac{\vec{F}_{e}}{q} \vec{F}_{e} \stackrel{\Delta U=-W=-\int \vec{F} \cdot d \vec{l}}{\stackrel{\Delta}{F}=-\nabla U_{e}} U_{e}
$$

- IMPORTANT: Charge q could be either positive or negative. (1) The electric force is: $\vec{F}_{e}=q \vec{E}$. Then the electric force, \vec{F}_{e}, and the electric field, \vec{E}, will be the same (opposite) direction if \boldsymbol{q} is positive (negative). (2) Same idea for the electric potential energy: $U_{e}=q V$. The electric potential energy, U_{e}, and the electric potential, V, will be the same (opposite) sign if \boldsymbol{q} is positive (negative).
- IMPORTANT \#2: The absolute number of the potential energy is not important, instead, the DIFFERENCE of the potential energy. Same for electric potential energy as well as electric potential.
- New unit for ENERGY: electron volt (eV)
$1 \mathrm{eV}=$ the electric potential energy gained by one electron with change of 1 V electric potential $=\left(1.602 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~V})=1.602 \times 10^{-19} \mathrm{~J}$
- Note: CV = J
- Note \#2: eV is an unit of ENERGY; while V is an unit of electric potential.

- Practice:

DO Example 23.8 (page 768)

DO Example 23.10 (page 769)

- Think: For charges on conductors, what determines them (the charges) to reach the equilibrium condition (all the charges stop moving, after the repelling from each other)?
- The whole surface (even the whole volume) of the conductor reach the same electric potential.
- Electric field could be calculated from the electric potential (the derivation could be found on page 774 in the text book):

$$
\vec{E}=-\vec{\nabla} V=-\left(\hat{i} \frac{\partial V}{\partial x}+\hat{j} \frac{\partial V}{\partial y}+\hat{k} \frac{\partial V}{\partial z}\right)
$$

Math Preview for Chapter 24:

- Nothing really special in Ch. 24

Question to think:

- Could we use the electric potential to move opposite signed charges to two different conductors, and use them later?

