## PHYS 1220, Engineering Physics, Chapter 23 – Electric Potential Instructor: TeYu Chien Department of Physics and Astronomy University of Wyoming

## Goal of this chapter is to teach you what is Electric Potential and how to use it to calculate Electric field

- Electric potential energy change: defined as  $\Delta U = -W$ , where *W* is the work done by conservative force (here, electric force).

• In an **uniform** field



- Electric force for a charge q:  $\vec{F} = q \vec{E}$ . The work done by this electric field when the charge q moves from a to b is:  $W_{ab} = \int_{a}^{b} \vec{F} \cdot d\vec{l} = q |\vec{E}|(y_a - y_b))$ . So, the electric potential energy change is defined as:  $\Delta U = -W_{ab} = q |\vec{E}|y_b - q|\vec{E}|y_a = U_b - U_a$ . Thus, the electric potential energy:  $U = q |\vec{E}|y$
- This is very similar to the same procedure to define gravitational potential energy: U = m g y
- Electric potential energy of two point charge:



• Electric force between the two charges:  $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$ . The work done by this electric field when their separation changes from  $r_a$  to  $r_b$  is:

 $W_{ab} = \int_{a}^{b} \vec{F} \cdot d\vec{r} = \frac{q_1 q_2}{4\pi\epsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right) \quad \text{So, the electric potential energy change is defined}$ as:  $\Delta U = -W_{ab} = \frac{q_1 q_2}{4\pi\epsilon_0} \left(\frac{1}{r_b} - \frac{1}{r_a}\right) = U_b - U_a$ . Thus, the electric potential energy:  $U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$ 

- This is very similar to the same procedure to define gravitational potential energy:  $U=-G\frac{m_1m_2}{r}$
- DO Example 23.2 (page 760)
- Electric potential energy with several point charges.
  - Since U is a scalar, you can just add all contribution together.



• The total electric potential energy in above system is:

$$U = \frac{1}{4\pi\epsilon_0} \left( \frac{q_1q_2}{r_{12}} + \frac{q_1q_3}{r_{13}} + \frac{q_1q_4}{r_{14}} + \frac{q_2q_3}{r_{23}} + \frac{q_2q_4}{r_{24}} + \frac{q_3q_4}{r_{34}} \right) = \frac{1}{4\pi\epsilon_0} \sum_{i < j} \frac{q_iq_j}{r_{ij}}$$

- Again, in many cases, we want to know when we put one testing charge q in a system, what will that charge acts/feels. Similar to the reason we defined the electric field, now we define **Electric Potential** as: *the potential energy per unit charge*.

$$V = \frac{U}{q_0}$$

- The unit of the electric potential is **volt**. 1V=1 volt = 1 J/C = 1 joule/coulomb
- Electric potential for various situations (remember that you are using a testing charge
  - $q_0$  to figure out the electric potential.):
    - Electric potential due to a point charge:

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

• Electric potential due to a collection of point charges:

$$V = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$

• Electric potential due to a continuous distribution of charges:

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$$

- What is the relationship among  $\vec{F}$  ,  $\vec{E}$  , U , and V ?

$$\vec{E} = \frac{\vec{F}_{e}}{q} \int_{\vec{E}} \frac{\Delta U = -W = -\int \vec{F} \cdot d\vec{l}}{\vec{F} = -\nabla U_{e}} \int_{V} U_{e} \int_{V} U_{e$$

- **IMPORTANT:** Charge q could be either positive or negative. (1) The electric force is:  $\vec{F}_e = q\vec{E}$ . Then the electric force,  $\vec{F}_e$ , and the electric field,  $\vec{E}$ , will be the **same** (opposite) direction if q is **positive** (negative). (2) Same idea for the electric potential energy:  $U_e = qV$ . The electric potential energy,  $U_e$ , and the electric potential, V, will be the **same** (opposite) sign if q is **positive** (negative).

- **IMPORTANT #2**: The absolute number of the **potential energy** is not important, instead, the **DIFFERENCE** of the potential energy. Same for **electric potential energy** as well as **electric potential**.

- New unit for **ENERGY**: electron volt (eV)

1 eV = the electric potential energy gained by one electron with change of 1 V electric potential =  $(1.602 \times 10^{-19} \text{ C}) (1 \text{ V}) = 1.602 \times 10^{-19} \text{ J}$ 

- Note: CV = J
- Note #2: eV is an unit of **ENERGY**; while V is an unit of **electric potential**.

## Practice: DO Example 23.8 (page 768) DO Example 23.10 (page 769)

- Think: For charges on conductors, what determines them (the charges) to reach the equilibrium condition (all the charges stop moving, after the repelling from each other)?

• The whole surface (even the whole volume) of the conductor reach the same electric potential.

- Electric field could be calculated from the electric potential (the derivation could be found on page 774 in the text book):

$$\vec{E} = -\vec{\nabla} V = -(\hat{i}\frac{\partial V}{\partial x} + \hat{j}\frac{\partial V}{\partial y} + \hat{k}\frac{\partial V}{\partial z})$$

Math Preview for Chapter 24:

• Nothing really special in Ch. 24

Question to think:

• Could we use the electric potential to move opposite signed charges to two different conductors, and use them later?