## PHYS 1220, Engineering Physics, Chapter 31 – Electromagnetic Wave Instructor: TeYu Chien Department of Physics and Astronomy University of Wyoming

## Goal of this chapter is to learn the nature of Electromagnetic wave and the relations to the Maxwell's equations.

- From Ampere's Law and Faraday's law in free space:

 $\oint \vec{B} \cdot d\vec{l} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt} \qquad (Ampere's Law)$   $\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \qquad (Faraday's Law)$ 

• Electric and magnetic fields are mutually induced. An electric field wave will induce a magnetic wave and vice versa. This is the physics behind the E&M wave.

- The electromagnetic wave (E&M wave) is a wave that is composed of electric and magnetic waves (simultaneously).

- E&M wave has other names (in the order of wave length from short to long):
  - Gamma ray
  - X-ray
  - Ultraviolet
  - (visible) light (when the wavelength is in the range of ~400 nm to ~700 nm).
  - Infrared
  - Microwave
  - Radio wave



- Let's look at the Maxwell's equations in free space (no charge and no current):

 $\oint \vec{E} \cdot d\vec{A} = 0 \qquad (Gauss's Law for \vec{E})$   $\oint \vec{B} \cdot d\vec{A} = 0 \qquad (Gauss's Law for \vec{B})$   $\oint \vec{B} \cdot d\vec{l} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt} \qquad (Ampere's Law)$   $\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \qquad (Faraday's Law)$ • Start with Faraday's law, it could reach:  $\frac{\partial E_y(x,t)}{\partial x} = \frac{-\partial B_z(x,t)}{\partial t}$ (a)
(b) Side view of the situation





• Start with Ampere's law, it could reach:  $\frac{-\partial B_z(x,t)}{\partial x} = \epsilon_0 \mu_0 \frac{\partial E_y(x,t)}{\partial t}$ 





- Thus:  $\frac{\partial^2 E_y(x,t)}{\partial x^2} = \epsilon_0 \mu_0 \frac{\partial^2 E_y(x,t)}{\partial t^2}$
- Note: in general, wave function is:  $\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$
- So:  $v=c=\frac{1}{\sqrt{\epsilon_0\mu_0}}$  (speed of light in vacuum)
- and:  $v = \frac{1}{\sqrt{\epsilon \mu}}$  (speed of light in material)
- In Optics:  $n = \frac{c}{v} = \frac{\sqrt{\epsilon_{\mu}}}{\sqrt{\epsilon_{0}\mu_{0}}} = \sqrt{KK_{m}}$  (index of refraction equal to the ratio of speed of light in vacuum and in media) (*K* and *K<sub>m</sub>* are relative permittivity and relative permeability of the material)
- Sinusoidal E&M Wave

• 
$$\vec{E}(x,t) = \hat{j} E_{max} \cos(kx - \omega t)$$

• 
$$\vec{B}(x,t) = \hat{k} B_{max} \cos(kx - \omega t)$$

- from  $\frac{\partial E_y(x,t)}{\partial x} = \frac{-\partial B_z(x,t)}{\partial t}$ , we know that:  $kE_{max}\sin(kx-\omega t) = \omega B_{max}\sin(kx-\omega t)$ , hence:  $E_{max} = c B_{max}$
- Notes for E&M wave:
  - The directions of electric field and magnetic field in an E&M wave are mutually perpendicular.

- The speed of the E&M wave is the speed of light:  $c=3\times10^8 m/s$
- The wave propagation direction is determined by  $\vec{c} = \vec{E} \times \vec{B}$



- Energy propagation by E&M wave
  - energy density in fields (both electric and magnetic):  $u = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \mu_0 B^2 = \epsilon_0 E^2$
  - Poynting vector:  $\vec{s} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$  "how much energy is propagated at which direction by E&M wave per unit area per time (this is just like the definition of light intensity or light energy flux)"
  - definition of light intensity or light energy flux)" • Derivation:  $|\vec{s}| = \frac{1}{A} \frac{dU}{dt} = \frac{1}{A} \frac{u \, dV}{dt} = \frac{1}{A} \frac{u \, A \, c \, dt}{dt} = uc = \epsilon_0 \, c \, E^2 = \epsilon_0 \, c^2 \, E \, B = \frac{1}{\mu_0} E \, B$

Math Preview for Chapter 17:

• Derivative

Questions to think about for Chapter 17:

• What is "heat"? What is "temperature"? What is the relationship between heat and temperature? How do we measure heat or temperature?