# New capacitors to improve electric vehicles

What is electric vehicle?



#### **Energy storage devices**



**Issues need to be solved for Capacitors used in EV** 

• The permittivity is a function of temperature, hence the capacitor, and the output voltage when using.

$$V = \frac{Q}{C}$$

 To keep the capacitor temperature at optimum temperature, cooling system is required, which will add weight onto the vehicle.

Solution: Use ceramic dielectric material that could operate at 200 C without changing capacitance significantly.

## **Comparison to other materials**

| Material | Operating Temperature<br>Range | Dielectric<br>Constant | temperature capacitance<br>change (%) |
|----------|--------------------------------|------------------------|---------------------------------------|
| C0G      | -55 to 125 °C                  | 10 - 100               | 0.3 % (-55 to 125 °C)                 |
| X7R      | -55 to 125                     | 2000 - 4000            | +/-15 % (-55 to 125 °C)               |
| Y5V      | -55 to 125 °C                  | > 16000                | < 82 % (-30 % to 85 °C)               |
| HITECA   | -55 to 200 °C                  | > 1200                 | +/-10 % (-55 to 200 °C)               |

## **Potential markets**

- Pulsed power
- Harsh environments
- Automotive
- Renewable energy
- Space
- Integrated circuits

## How they do it?



Au:Top Electrode $Al_2O_3$ :Dielectric Material 1BFO-STO:Dielectric Material 2SRO:Bottom Electrode

#### Based on what you learn, do you know the capacitance?



In their case,  $\varepsilon_1 < \varepsilon_2$ 

Quiz: What is the relationship between the magnitude of  $\sigma_1$  and  $\sigma_2$ 

(a) 
$$\sigma_1 > \sigma_2$$
  
(b)  $\sigma_1 = \sigma_2$   
(c)  $\sigma_1 < \sigma_2$ 

#### Based on what you learn, do you know the capacitance?



In their case,  $\varepsilon_1 < \varepsilon_2$ 

Quiz: What is the relationship between the magnitude of  $\sigma_1$  and  $\sigma_2$ Answer:  $\sigma_1 = \sigma_2 = \sigma$ 

$$\vec{E}_1 = \frac{\sigma}{\epsilon_1}$$
$$\vec{E}_2 = \frac{\sigma}{\epsilon_2}$$

$$V = \int \vec{E} \cdot d\vec{l} = |\vec{E}_1| d_1 + |\vec{E}_2| d_2$$
  

$$V = \frac{\sigma}{\epsilon_1} d_1 + \frac{\sigma}{\epsilon_2} d_2 = \frac{Q}{A\epsilon_1} d_1 + \frac{Q}{A\epsilon_2} d_2$$
  

$$C = \frac{Q}{V} = \frac{A}{\frac{d_1}{\epsilon_1} + \frac{d_2}{\epsilon_2}}$$