Chapter 20: The Second Law of Thermodynamics

- Do processes have preferential process tendency/direction?
- What are "reversible" and "irreversible" processes?
- How do we compute the disorder change?
- How do we use a heat engine or a refrigerator?

Do processes have preferential process tendency/direction?

The First Law of Thermodynamics

$$
\Delta U=Q-W \quad \text { For a process }
$$

What are "reversible" and "irreversible" processes?

Free expansion vs isothermal expansion

Free expansion (W = 0)

$$
\begin{aligned}
& Q=0, \text { since it is fast } \\
& \Delta U=0, \text { by First law }
\end{aligned}
$$

Examples of irreversible process

- Moving object slows down due to friction
- Flow of electric current through a resistance
- Spontaneous mixing of matter of varying composition

How do we compute the change of disorder?

Natural processes tend to increase disorder of the universe.

http://people.bu.edu/straub/courses/demoma

This is why we doit teach our children about entropy until much later...

Entropy: A quantity describes level of disorder

$$
d S=\frac{d Q}{T} \quad \Delta S=\int_{1}^{2} \frac{d Q}{T}
$$

Microscopic view of Entropy: calculating the level of disorder

	cin	configuration	w	S
Smateme	0000	4 H	1	$k \cdot \ln 1$
Tembut		3 H 1 T	4	$k \cdot \ln 4$
Tmome	0.00	2 H 2 T	6	$k \cdot \ln 6$
	(20)	1 H 3 T	4	$k \cdot \ln 4$
Foumb	030	4 T	1	$k \cdot \ln 1$

$$
S=k \cdot \ln w
$$

w : number of possible state/configuration

The Second Law of Thermodynamics

The Second Law of Thermodynamics: $\quad \Delta S \geq 0$

Reversible process: $\quad \Delta S=0$

Irreversible process: $\quad \Delta S>0$

Quiz:

A hot piece of iron is thrown into the ocean and its temperature eventually stabilizes. Which of the following statements concerning this process is correct?
A. The change in the entropy of the iron-ocean system is zero.
B. The ocean gains less entropy than the iron loses.
C. The entropy gained by the iron is equal to the entropy lost by the ocean.
D. The entropy lost by the iron is equal to the entropy gained by the ocean.
E . The ocean gains more entropy than the iron loses.

Some process are impossible: The Second Law of Thermodynamics

Kelvin statement

It is impossible for any system to undergo a process in which it absorbs heat from a reservoir at a single temperature and converts the heat completely into mechanical work, with the system ending in the same state in which it began.

Clausius statement
It is impossible for any process to have as its sole result the transfer of heat from a cooler to a hotter body.

How do we use a heat engine or a refrigerator?

- Both heat engine and refrigerator perform in cyclic processes. In other words, the initial and final states are the same. $\rightarrow \Delta \mathrm{U}=0$
- During the cycling, some parts of the cycle gain heat, and some lose heat.

$$
\Delta U=0=Q-W \quad Q=Q_{\text {in }}-Q_{\text {out }}=W
$$

Refrigerator

Heat Engine

Engine efficiency: $e=\frac{W}{\left|Q_{H}\right|} \quad\left(e=\frac{\left|Q_{H}\right|-\left|Q_{C}\right|}{\left|Q_{H}\right|}=1-\frac{\left|Q_{C}\right|}{\left|Q_{H}\right|}\right)$

Otto Cycle (two adiabatic, and two isochoric processes)

Otte cycle

$$
e=1-\frac{\left|Q_{C}\right|}{\left|Q_{H}\right|}
$$

d to a

$$
\Delta U=U_{a}-U_{d}=Q=-\left|Q_{C}\right|
$$

b to c

$$
\Delta U=U_{c}-U_{b}=Q=\left|Q_{H}\right|
$$

$$
\text { Note: } \quad \Delta U=n C_{V} \Delta T
$$

$$
e=1-\frac{1}{r^{\gamma-1}}
$$

Diesel Cycle (two adiabatic, one isochoric, and one isobaric processes)

Diesel cycle

(1) Adiabatic compression (compression stroke)
(4) Cooling at constant volume (cooling of exhaust gases)

Carnot Cycle (two adiabatic, and two isothermal processes)

An ideal cycle that maximize the efficiency

$$
e=1-\frac{\left|Q_{C}\right|}{\left|Q_{H}\right|}
$$

a to b

$$
\begin{aligned}
& Q=\left|Q_{H}\right|=W=\int_{a}^{b} p d V \\
& c \text { to } d \\
& Q=-\left|Q_{C}\right|=W=\int_{c}^{d} p d V
\end{aligned}
$$

$$
e=1-\frac{T_{C}}{T_{H}}
$$

Coefficient of performance of refrigerator

Coefficient of performance: $\begin{array}{r}K=\frac{\left|Q_{C}\right|}{W}=\frac{\left|Q_{C}\right|}{\left|Q_{H}\right|-\left|Q_{C}\right|} \\ K=\frac{\left|Q_{C}\right|}{W}=\frac{H}{P}\end{array}$

- typical air conditioners have heat removal rates H of 5,000 to $10,000 \mathrm{Btu} / \mathrm{h}$ ($\sim 1,500-3,000 \mathrm{~W}$); and require electric power input of about 600 to 1,200 W. Thus, typically, $K=\sim 3$.

