Chapter 4

The Nuclear Atom



Atomic Spectra: Balmer series (1885)

Balmer series
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Atomic Spectra: Rydberg-Ritz formula (1908)

Rydberg-Ritz formula L =R (

Amn

,;z - nlz) forn>m. Ry = 1.096776 x 10"m™1
Ro = 1.097373 x 107m™1!

The hydrogen Balmer series reciprocal wavelengths are those
given by Eq. 4-2 withm=2andn=3,4,5, ...



Example

* The hydrogen Balmer series reciprocal wavelengths are those given by
Eq.4-2 withm=2andn=3,4,5, ... Other series of hydrogen
spectral lines were found for m =1 (by Lyman) and m = 3 (by
Paschen). Compute the wavelengths of the first lines of the Lyman

and Paschen series.



JJ Thomson’s Nuclear Model
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Cannot explain the atomic spectra and cannot explain
Rutherford’s experiment.
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Rutherford’s Scattering Theory
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Cross section and scattered fraction
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Example

 Calculate the fraction of an incident beam of o particles of kinetic
energy 5 MeV that Geiger and Marsden expected to see for 0 > 90°
from a gold foil (Z = 79) 10~ m thick. The density of gold is 19.3
g/cm3; M =197.



More quantitative agreements
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Size of the nucleus
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Example

* A beam of a particles with E;, = 6.0 MeV impinges on a silver foil 1.0
um thick. The beam current is 1.0 nA. How many a particles will be
counted by a small scintillation detector of area equal to 5 mm?
located 2.0 cm from the foil at an angle of 75°? (For Silver Z=47, p =
10.5 gm/cm?3, and M = 108).



Nuclear Model of Hydrogen Atom

Classical Mechanics Classical Electromagnetism
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Electrons could orbit Electrons with acceleration
at any value of r. would emit radiation as

E&M wave.



Bohr Model of Hydrogen Atom (1913)

Bohr’s postulates

* Electrons could move in certain orbits without radiating — stationary
state.

* The atom radiates when the electron makes a transition from one
stationary state to another and that the frequency f of the emitted
radiation is related to the energy difference between them.

* In the limit of large orbits and large energies, quantum calculations
must agree with classical calculations.



Stationary State/Orbital in Hydrogen Atom

Based on measurements and assumptions made by Bohr, angular momentum is
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Bohr’s Radiation Energy
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Recall, from measurements

Ry = 1.096776 X 107m™!
R,, = 1.097373 x 107m™?




Bohr’s Radiation Energy in Hydrogen Atom
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Example

* Compute the wavelength of the Hp spectral line, that is, the second
line of the Balmer series predicted by Bohr’s model. The Hg line is
emitted in the transition fromn; = 4 to ny = 2.



Reduced Mass Correction
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Example

 Compute the Rydberg constants for H and He* applying the reduced
mass correction (m =9.1094 x 10™3'kg; m, = 1.6726 x 10™*"kg;
my, = 6.6447 x 10747 kg).



Correspondence Principle
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X-ray spectra

Bohr’s model
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Example

* Calculate the wavelength of the K, line of molybdenum (Z = 42), and
compare the result with the value A = 0.0721 nm measured by
Moseley and with the spectrum in Figure 3-15b (page 141)



Auger Electrons
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Franck-Hertz Experiment
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Electron Energy Loss Spectroscopy (EELS)
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