Chapter 6

The Schrödinger Equation

The Schrödinger Equation

Wave equation of $E \& M$ wave $\frac{\partial^{2} \xi}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \xi}{\partial t^{2}}$

$$
\xi(x, t)=\xi_{0} \cos (k x-\omega t)
$$

$$
E=p c
$$

Postulates: $\quad \frac{\partial}{\partial x}=i k \quad \frac{\partial}{\partial t}=-i \omega$

The Schrödinger Equation

$$
\begin{gathered}
E=\frac{p^{2}}{2 m}+V \\
\hbar \omega=\frac{\hbar^{2} k^{2}}{2 m}+V \\
\frac{\partial}{\partial x}=i k \quad \frac{\partial}{\partial t}=-i \omega \\
\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right) \Psi(x, t)=i \hbar \frac{\partial}{\partial t} \Psi(x, t)
\end{gathered}
$$

The Schrödinger Equation

- Wave function is an imaginary function.
- Wave function of matter is not a measurable function/quantity.
- Instead, it is the probability interpretation of the particle.

$$
P(x, t) d x=\Psi^{*}(x, t) \Psi(x, t) d x=|\Psi(x, t)|^{2} d x
$$

$$
\int_{-\infty}^{\infty} \Psi^{*}(x, t) \Psi(x, t) d x=1
$$

Separation of Time and Space Variables

$$
\begin{gathered}
\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right) \Psi(x, t)=i \hbar \frac{\partial}{\partial t} \Psi(x, t) \\
\Psi(x, t)=\psi(x) \phi(t) \\
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x) \\
i \hbar \frac{d \phi(t)}{d t}=E \phi(t) \\
\phi(t)=e^{-i E t / \hbar} \\
\int_{-\infty}^{\infty} \Psi^{*}(x, t) \Psi(x, t) d x=1 \Rightarrow \int_{-\infty}^{\infty} \psi^{*}(x, t) \psi(x) d x=1
\end{gathered}
$$

Conditions for Acceptable Wave Functions

- $\psi(x)$ must exist and satisfy the Schrödinger equation.
- $\psi(x)$ and $d \psi / d x$ must be continuous.
- $\psi(x)$ and $d \psi / d x$ must be finite.
- $\psi(x)$ and $d \psi / d x$ must be single valued.
- $\psi(x) \rightarrow 0$ fast enough as $x \rightarrow \pm \infty$ so that the normalization integral remain bounded.

Example

- Show that for a free particle of mass m moving in one dimension, the function $\psi(x)=A \operatorname{sink} x+B \cos k x$ is a solution to the timeindependent Schrödinger equation for any values of the constants A and B.

The Infinite Square Well

$$
\begin{array}{ll}
V(x)=0 & 0<x<L \\
V(x)=\infty & x<0 \text { and } x>L
\end{array}
$$

Standing Wave method

$$
E_{n}=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}=n^{2} E_{1}
$$

Solving Schrödinger equation

$$
\psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

The Infinite Square Well

$$
E_{n}=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}=n^{2} E_{1}
$$

The Infinite Square Well

$$
\psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

The Infinite Square Well - the Complete Wave Function

$$
\Psi(x, t)=\psi(x) \phi(t)
$$

$$
\psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

$$
\begin{gathered}
\phi(t)=e^{-i E t / \hbar} \\
\phi_{n}(t)=e^{-i E_{n} t / \hbar}
\end{gathered}
$$

$$
\Psi(x, t)=\frac{1}{2 i} \sqrt{\frac{2}{L}}\left[e^{i\left(k_{n} x-\omega_{n} t\right)}-e^{-i\left(k_{n} x+\omega_{n} t\right)}\right]
$$

Example

- An electron moving in a thin metal wire is a reasonable approximation of a particle in a one-dimensional infinite well. The potential inside the wire is constant on average but rise sharply at each end. Suppose the electron is in a wire 1.0 cm long. (a) Compute the ground-state energy for the electron. (b) If the electron's energy is equal to the average kinetic energy of the molecules in a gas at T $=300 \mathrm{~K}$, about 0.03 eV , what is the electron's quantum number n ?

Example

- Suppose that the electron in the above example could be "seen" while in its ground state. (a) What would be the probability of finding it somewhere in the region $0<x<L / 4$? (b) What would be the probability of finding it in a very narrow region $\Delta x=0.01 \mathrm{~L}$ wide centered at $\mathrm{x}=5 \mathrm{~L} / 8$?

The Finite Square Well

$$
\begin{array}{lr}
V(x)=0 & 0<x<L \\
V(x)=V_{0} & x<0 \text { and } x>L
\end{array}
$$

Expectation Values

$$
\langle f(x)\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t) f(x) \psi(x) d x
$$

$$
\langle x\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t) x \psi(x) d x
$$

$$
\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t) x^{2} \psi(x) d x
$$

How about <p>?

Expectation Values and Operators

$$
\begin{gathered}
\frac{\partial}{\partial x}=i k \quad p=\hbar k=\frac{\hbar}{i} \frac{\partial}{\partial x} \\
\langle p\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t)\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right) \psi(x) d x=\int_{-\infty}^{\infty} \frac{\hbar}{i} \psi^{*}(x, t) \frac{\partial \psi(x)}{\partial x} d x \\
\left\langle p^{2}\right\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t)\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right)\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right) \psi(x) d x=-\int_{-\infty}^{\infty} \hbar^{2} \psi^{*}(x, t) \frac{\partial^{2} \psi(x)}{\partial x^{2}} d x
\end{gathered}
$$

Example

- Find $\langle p\rangle$ and $\left\langle p^{2}\right\rangle$ for the ground-state wave function of the infinite square well.

Operators in Quantum Mechanics

Position operator

$$
x_{o p} \psi(x)=x \psi(x)
$$

Momentum operator

$$
p_{o p} \psi(x)=\frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x)
$$

Hamiltonian (energy operator) in time-independent

$$
H_{o p} \psi(x)=\left(\frac{p_{o p}^{2}}{2 m}+V(x)\right) \psi(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)
$$

Hamiltonian (energy operator) in time-dependent

$$
H_{o p} \phi(t)=i \hbar \frac{\partial}{\partial t} \phi(t)=E \phi(t)
$$

Simple Harmonic Oscillator

$$
V(x)=\frac{1}{2} K x^{2}=\frac{1}{2} m \omega^{2} x^{2}
$$

$$
H_{o p} \psi(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)
$$

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Simple Harmonic Oscillator

$$
\psi_{0}(x)=A_{0} e^{-m \omega x^{2} / 2 \hbar}
$$

$$
\psi_{2}(x)=A_{2}\left(1-\frac{2 m \omega x^{2}}{\hbar}\right) e^{-m \omega x^{2} / 2 \hbar}
$$

$$
\psi_{1}(x)=A_{1} \sqrt{\frac{m \omega}{\hbar}} x e^{-m \omega x^{2} / 2 \hbar}
$$

Reflection and Transmission

$$
k_{1}=\frac{\sqrt{2 m E}}{\hbar} \quad k_{2}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}
$$

$$
T=\frac{4 k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}}
$$

$$
R+T=1
$$

Reflection and Transmission

$$
R=1
$$

$$
T=0
$$

Reflection and Transmission

Potential Barrier

$$
\begin{aligned}
V(x) & = \begin{cases}V_{0} & \text { for } 0<x<a \\
0 & \text { for } 0>x \text { and } x>a\end{cases} \\
& T \approx 16 \frac{E}{V_{0}}\left(1-\frac{E}{V_{0}}\right) e^{-2 \alpha a}
\end{aligned}
$$

$$
\begin{aligned}
\psi_{\mathrm{I}}(x) & =A e^{i k_{1} x}+B e^{-i k_{1} x} & & x<0 \\
\psi_{\mathrm{II}}(x) & =C e^{-\alpha x}+D e^{\alpha x} & & 0<x<a \\
\psi_{\mathrm{III}}(x) & =F e^{i k_{1} x}+G e^{-i k_{1} x} & & x>a
\end{aligned}
$$

Scanning Tunneling Microscopy

Si (111) $7 x 7$ reconstruction

Image Credit: Andrew Yost

Scanning Tunneling Microscopy

