
Chapter 6
The Schrödinger Equation



The Schrödinger Equation
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The Schrödinger Equation
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The Schrödinger Equation

• Wave function is an imaginary function.

• Wave function of matter is not a measurable function/quantity.

• Instead, it is the probability interpretation of the particle.
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Separation of Time and Space Variables
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Conditions for Acceptable Wave Functions

• 𝜓 𝑥 must exist and satisfy the Schrödinger equation.

• 𝜓 𝑥 and 𝑑𝜓/𝑑𝑥 must be continuous.

• 𝜓 𝑥 and 𝑑𝜓/𝑑𝑥 must be finite.

• 𝜓 𝑥 and 𝑑𝜓/𝑑𝑥 must be single valued.

• 𝜓 𝑥 → 0 fast enough as 𝑥 → ±∞ so that the normalization integral 
remain bounded.



Example

• Show that for a free particle of mass m moving in one dimension, the 
function 𝜓 𝑥 = 𝐴𝑠𝑖𝑛𝑘𝑥 + 𝐵𝑐𝑜𝑠𝑘𝑥 is a solution to the time-
independent Schrödinger equation for any values of the constants A 
and B.



The Infinite Square Well
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The Infinite Square Well
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The Infinite Square Well
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The Infinite Square Well – the Complete Wave 
Function
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Example

• An electron moving in a thin metal wire is a reasonable approximation 
of a particle in a one-dimensional infinite well. The potential inside 
the wire is constant on average but rise sharply at each end. Suppose 
the electron is in a wire 1.0 cm long. (a) Compute the ground-state 
energy for the electron. (b) If the electron’s energy is equal to the 
average kinetic energy of the molecules in a gas at T = 300 K, about 
0.03 eV, what is the electron’s quantum number n?



Example

• Suppose that the electron in the above example could be “seen” 
while in its ground state. (a) What would be the probability of finding 
it somewhere in the region 0 < x < L/4? (b) What would be the 
probability of finding it in a very narrow region Dx = 0.01 L wide 
centered at x = 5L/8?
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Expectation Values
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Expectation Values and Operators
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Example

• Find 𝑝 and 𝑝2 for the ground-state wave function of the infinite 
square well. 



Operators in Quantum Mechanics
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Simple Harmonic Oscillator
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Simple Harmonic Oscillator
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Reflection and Transmission
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Reflection and Transmission
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Reflection and Transmission



Potential Barrier
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