D 1

26.43 .. CP In the circuit shown in Fig. E26.43 both capacitors are initially charged to 45.0 V . (a) How long after closing the switch S will the potential across each capacitor be reduced to 10.0 V , and (b) what will be the current at that time?

Figure E26.43

D 2

A particle with a charge of -5.50 nC is moving in an uniform magnetic field of $\vec{B}=$ $-(1.28 T) \hat{k}$. The magnetic force on the particle is measured to be $\vec{F}=-(3.90 \times$ $\left.10^{-7} N\right) \hat{\imath}+\left(7.60 \times 10^{-7} N\right) \hat{\jmath}$.

Calculate the x, y, and z components of the velocity of the particle and determine the angle between the velocity and the magnetic force.

D 3

A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at $1.60 \mathrm{~km} / \mathrm{s}$ in the $+x$-direction experiences a force of $2.10 \times 10^{-16} \mathrm{~N}$ in the $+y$-direction, and an electron moving at $4.30 \mathrm{~km} / \mathrm{s}$ in the $-z$ direction experiences a force of $8.30 \times 10^{-16} N$ in the $+y$-direction.

What is the magnitude and direction of the magnetic force on an electron moving in the $-y$-direction at $3.30 \mathrm{~km} / \mathrm{s}$?

D 4

27.55 - When a particle of charge $q>0$ moves with a velocity of $\overrightarrow{\boldsymbol{v}}_{1}$ at 45.0° from the $+x$-axis in the $x y$-plane, a uniform magnetic field exerts a force $\overrightarrow{\boldsymbol{F}}$ (along the $-z$-axis (Fig. P27.55). When the same particle moves with a velocity $\overrightarrow{\boldsymbol{v}}_{2}$ with the same magnitude as $\overrightarrow{\boldsymbol{v}}_{1}$ but along the $+z$-axis, a force $\overrightarrow{\boldsymbol{F}}_{2}$ of magnitude F_{2} is exerted on it along the $+x$-axis. (a) What are the magnitude (in terms of q, v_{1}, and F_{2}) and direction of the magnetic field? (b) What is the magnitude of $\overrightarrow{\boldsymbol{F}}_{1}$ in terms of F_{2} ?

Figure P27.55

