D 1

17.60 .. A copper calorimeter can with mass 0.100 kg contains 0.160 kg of water and 0.0180 kg of ice in thermal equilibrium at atmospheric pressure. If 0.750 kg of lead at a temperature of $255^{\circ} \mathrm{C}$ is dropped into the calorimeter can, what is the final temperature? Assume that no heat is lost to the surroundings.

D 2

18.33 - We have two equal-size boxes, A and B. Each box contains gas that behaves as an ideal gas. We insert a thermometer into each box and find that the gas in box A is at a temperature of $50^{\circ} \mathrm{C}$ while the gas in box B is at $10^{\circ} \mathrm{C}$. This is all we know about the gas in the boxes. Which of the following statements must be true? Which could be true? (a) The pressure in A is higher than in B. (b) There are more molecules in A than in B. (c) A and B do not contain the same type of gas. (d) The molecules in A have more average kinetic energy per molecule than those in B. (e) The molecules in A are moving faster than those in B. Explain the reasoning behind your answers.

D 3
The gas inside a balloon will always have a pressure nearly equal to atmospheric pressure, since that is the pressure applied to the outside of the balloon. You fill a balloon with helium (a nearly ideal gas) to a volume of 0.590 L at a temperature of $21.0{ }^{\circ} \mathrm{C}$.
What is the volume of the balloon if you cool it to the boiling point of liquid nitrogen, 77.3 K?
D 4
A flask contains a mixture of neon (Ne), krypton (Kr), and radon (Rn) gases. (Hint: The molar mass of the Ne is $20.180 \mathrm{~g} / \mathrm{mol}$, of the Kr is $83.80 \mathrm{~g} / \mathrm{mol}$, and of the $\mathrm{Rn} 222 \mathrm{~g} / \mathrm{mol}$)

Part A

What is the ratio of the average kinetic energy of the Ne to that of the Kr?

Part B

What is the ratio of the average kinetic energy of the Kr to that of the Rn ?

Part C

What is the ratio of the average kinetic energy of the Rn to that of the Ne ?
Part D
What is the ratio of the root-mean-square speed of the Ne to that of the Kr ?
Part E
What is the ratio of the root-mean-square speed of the Kr to that of the Rn ?
Part F
What is the ratio of the root-mean-square speed of the Rn to that of the Ne ?

