Problem 23.68

A disk with radius R has uniform surface charge density σ.

Part A

By regarding the disk as a series of thin concentric rings, calculate the electric potential V at a point on the disk's axis a distance x from the center of the disk. Assume that the potential is zero at infinity. (Hint: Use the result that potential at a point on the ring axis at a distance x from the center of the ring is $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\sqrt{x^{2}+a^{2}}}$ where Q is the charge of the ring and a is the radius of the ring.)

Part B

Calculate $-\partial V / \partial x$.

Problem 23.20.

A positive charge $+q$ is located at the point $x=0, y=-a$, and a negative charge $-q$ is located at the point x $=0, y=+a$. (a) Derive an expression for the potential V at points on the y-axis as a function of the coordinate y. Take V to be zero at an infinite distance from the charges. (b) Graph V at points on the y axis as a function of y over the range from $y=-4 a$ to $y=+4 a$. (c) Show that for $y>a$, the potential at a point on the positive y-axis is given by $V=-\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{2 q a}{y^{2}}$.

Problem 24.12

Three capacitors, with capacitances $C_{1}=2.2 \mu \mathrm{~F}, C_{2}=2.9 \mu \mathrm{~F}$, and $C_{3}=4.6 \mu \mathrm{~F}$, are connected to a 18 V voltage source, as shown in the figure. What is the charge on capacitor C_{2} ?

Problem 24.17

The network shown in the figure is assembled with uncharged capacitors X, Y, and Z, with $C_{X}=3 \mu \mathrm{~F}, C_{Y}=6 \mu \mathrm{~F}$, and $C_{z}=7 \mu \mathrm{~F}$ and open switches, S_{1} and S_{2}. A potential difference $V_{a b}=$ +120 V is applied between points a and b. After the network is assembled, switch S_{1} is closed for a long time, but switch S_{2} is kept open. Then switch S_{1} is opened and switch S_{2} is closed. What is the final voltage across capacitor X ?

