1. A long metal cylinder with radius a is supported on an insulating stand on the axis of a long, hollow, metal tube with radius b. The positive charge per unit length on the inner cylinder is λ, and there is an equal negative charge per unit length on the outer cylinder. (a) calculate the potential $V(r)$ for (i) $r<a$; (ii) $a<r<b$; (iii) $r>b$. (Hint: The net potential is the sum of the potentials due to the individual conductors.) Take $V=0$ at $r=b$. (b) Show that the potential of the inner cylinder with respect to the outer is

$$
V_{a b}=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \frac{b}{a}
$$

(c) Use the result from part (a) to show that the electric field at any point between the cylinders has magnitude

$$
E(r)=\frac{V_{a b}}{\ln (b / a)} \frac{1}{r}
$$

2. Electric charge Q is distributed uniformly along a line or thin rod of length $2 a$. Find the potential at a point P along the perpendicular bisector of the rod at a distance x from its center.

