Publication List

Invited review or feature articles:

  1. W. Wang, T. Lee, and M. A. Reed, "Electron Tunneling in Self-Assembled Monolayers," review article, Reports on Progress in Physics, 68, 523 (2005).
  2. W. Wang, T. Lee, and M. A. Reed, "Electronic Transport in Molecular Self-Assembled Monolayer Devices," review article, Proceedings of the IEEE, 93, 1815 (2005), Special Issue on Blue Sky Electronic Technologies.
  3. W. Wang, T. Lee, and M. A. Reed, "Elastic and Inelastic Electron Tunneling in Alkane Self-Assembled Monolayers," feature article, Journal of Physical Chemistry B, 108, 18398 (2004).

Journal publications:

  1. U. Poudyal, F. S. Maloney, K. Sapkota, and W. Wang, “Carrier Transport Dynamics in Mn-doped CdSe Quantum Dot Sensitized Solar Cells”, Nanotechnology, 28, 415401, 2017.
  2. F. S. Maloney and W. Wang, "Influence of the Sn oxidation state in ferromagnetic Sn-doped In2O3 nanowires," Applied Physics Letters, 109, 243104 2016.
  3. B. R. Yakami, U. Poudyal, S. R. Nandyala, G. Rimal, J. K. Cooper, X. Zhang, J. Wang, W. Wang, and J. M. Pikal, "Steady State and Time Resolved Optical Characterization Studies of Zn2SnO4 Nanowires for Solar Cell Applications," Journal of Applied Physics, 120, 163101, 2016.
  4. K. R. Sapkota, W. Chen, S. Maloney, U. Poudyal, and W. Wang, "Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires," Scientific Reports, 6, 35036, 2016.
  5. A. Pimachev, U. Poudyal, V. Proshchenko, W. Wang and Y. Dahnovsky, "Large Enhancement in Photocurrent by Mn Doping in CdSe/ZTO Quantum Dot Sensitized Solar Cells," Physical Chemistry Chemical Physics, 18, 26771, 2016.
  6. G. Rimal, V. Proshchenko, A. Yost, U. Poudyal, S. Maloney, W. Wang, T.-Y. Chien, Yu. Dahnovsky and J. Tang, "Giant photocurrent enhancement by Mn doping in PbS quantum dot solar cells," Applied Physics Letters 109, 103901, 2016.
  7. S. Horoz, B. Yakami, U. Poudyal, J.M. Pikal, W. Wang and J. Tang, "Controlled Synthesis of Eu2+ and Eu3+ doped ZnS Quantum Dots and Their Optical, Photovoltaic and Magnetic Properties," AIP Advances, 6, 045119, 2016.
  8. Q. Dai, S. Maloney, W. Chen, U. Poudyal, and W. Wang, "Passivation Effects on Quantum Dots Prepared by Successive Ionic Layer Adsorption and Reaction," Nanotechnology 27, 225401, 2016.
  9. W. Chen, S. Maloney, and W. Wang, "Carbon-coated Zn2GeO4 on Ni foam as lithium ion battery anodes with exceptional long cycling stability," Electrochimica Acta, 176, 96, 2015.
  10. Y. Yang and W. Wang, "Effects of Incorporating PbS Quantum Dots in Perovskite Solar Cells Based on CH3NH3PbI3," Journal of Power Sources, 293, 577, 2015.
  11. Y. Yang and W. Wang, "A New Polymer Electrolyte for Solid-State Quantum Dot Sensitized Solar Cells," Journal of Power Sources, 285, 70, 2015.
  12. S. Horoz, Q. Dai, F. S. Maloney, B. Yakami, J. M. Pikal, W. Wang and J. Tang, “Absorption induced by Mn doping of ZnS for improved sensitized quantum-dot solar cells,” Physical Review Applied, 3, 024011 (2015).
  13. W. Chen, L. Lu, S. Maloney, Y. Yang, and W. Wang, "Coaxial Zn2GeO4@Carbon Nanowires Directly Grown on Cu Foils as High-Performance Anodes for Lithium Ion Batteries," Physical Chemistry Chemical Physics, 17, 5109 (2015).
  14. Q. Dai, E. M. Sabio, W. Wang, and J. Tang, “Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance,” Applied Physics Letters, 104, 183901 (2014).
  15. Y. Yang, J. Cui, P. Yi, C. Zhou, X. Zheng, X. Guo, and W. Wang, "Effects of Nanoparticle-Additives on the Properties of Agarose Polymer Electrolytes," Journal of Power Sources, 988, 248 (2014).
  16. L. Lu, J. Chen, and W. Wang, "Wide Bandgap Zn2GeO4 Nanowires as Photoanode for Quantum Dot Sensitized Solar Cells," Applied Physics Letters, 103, 123902 (2013).
  17. Y. Yang, P. Yi, C. Zhou, J. Cui, X. Zheng, S. Xiao , X. Guo, and W. Wang, "Magnetic Field Processed Solid-State Dye-Sensitized Solar Cells with Nickel Oxide Modified Agarose Electrolyte," Journal of Power Sources, 243, 919 (2013).
  18. J. Chen and W. Wang, "Carrier Transport Processes in Dye Sensitized Solar Cells Based on Zn2SnO4 Nanostructures Studied by Intensity Modulated Photocurrent/Photovoltage Spectroscopy," Applied Physics Letters, 102, 213904 (2013).
  19. Q. Dai, J. Chen, L. Lu, J. Tang, and W. Wang, "PbS Quantum Dots Prepared by Pulsed Laser Deposition for Photovoltaic Applications and Ligand effects on Device Performance,"Applied Physics Letters, 102, 203904 (2013).
  20. X. Guo, P. Yi, Y. Yang, J. Cui, S. Xiao, and W. Wang, "Effects of Surfactants on Agarose-Based Magnetic Polymer Electrolyte for Dye Sensitized Solar Cells,"Electrochimica Acta, 90, 524 (2013).
  21. S. Horoz, L. Lu, Q. Dai, J. Chen, B. Yakami, J. Pikal, W. Wang, and J. Tang, "CdSe Quantum Dots Synthesized by Laser Ablation in Water and Their Photovoltaic Applications," Applied Physics Letters, 101, 223902, (2012).
  22. A. Pimachev, G. Kolesov, J. Chen, W. Wang, and Y. Dahnovsky, "Internal relaxation in dye sensitized solar cells based on Zn2SnO4 nanostructures," Journal of Chemical Physics, 137, 244704, (2012).
  23. H. Yu, C. M. Eggleston, J. Chen, W. Wang, Q. Dai, and J. Tang, "Optical Waveguide Lightmode Spectroscopy (OWLS) as a Sensor for Thin Film and Quantum Dot Corrosion," Sensors, 12, 17330, (2012).
  24. Q. Dai, J. Chen, L. Lu, J. Tang, and W. Wang, "Pulsed Laser Deposition of CdSe Quantum Dots on Zn2SnO4 Nanowires and Their Photovoltaic Applications," Nano Letters, 12, 4187, (2012).
  25. J. Chen, L. Lu, and W. Wang, "Zn2SnO4 Nanowires as Photoanode for Dye Sensitized Solar Cells and the Improvement on Open-Circuit Voltage," Journal of Physical Chemistry C, 116, 10841(2012).
  26. L. Lu, J. Chen, L. Li, and W. Wang, "Direct Synthesis of Vertically Aligned ZnO Nanowires on FTO Substrates Using a CVD Method and the Improvement of Photovoltaic Performance," Nanoscale Research Letters, 7, 293 (2012).
  27. G. Wang, T. Kim, T. Lee, W. Wang, and M. A. Reed, "Electronic Properties of Alkanethiol Molecular Junctions: Conduction Mechanisms, Metal-Molecule Contacts, and Inelastic Transport," Comprehensive Nanoscience and Technology, 4, 463, edited by G. Wiederrecht, Oxford: Academic Press, (2010).
  28. C. A. Richter, H. D. Xiong, X. Zhu, W. Wang, V. M. Stanford, W. Hong, T. Lee, D. E. Ioannou, and Q. Li, "Metrology for the electrical characterization of semiconductor nanowires," IEEE Transaction on Electron Devices, 55, 3086 (2009).
  29. W. Wang, A. Scott, N. Gergel-Hackett, C. Hacker, D. B. Janes, and C. A. Richter, "Probing molecules in integrated silicon-molecule-metal junctions," Nano Letters, 8, 478 (2008).
  30. N. V. Nguyen, O. Kirillov, W. Jiang, W. Wang, J. S. Suehle, P. D. Ye, N. Goel, K.-W. Choi, and S. Safak, "Band offsets of atomic-layer-deposited Al2O3 on GaAs and the effects of surface treatment," Applied Physics Letters, 93, 082105 (2008).
  31. H. Xiong, W. Wang, Q. Li, J. S. Suehle, C. A. Richter, W. Hong, T. Lee, and D. M. Fleetwood, "Random Telegraph Signals in n-type ZnO Nanowire Field Effect Transistors at Low Temperature," Applied Physics Letters, 91, 053107 (2007).
  32. W. Wang, H. Xiong, M. Edelstein, D. Gundlach, J. S. Suehle, W. Hong, T. Lee, and C. A. Richter, "Low Frequency Noise Characterizations of ZnO Nanowire Field Effect Transistors," Journal of Applied Physics, 101, 044313 (2007).
  33. W. Wang and C. A. Richter, "Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions," Applied Physics Letters, 89, 153105 (2006).
  34. W. Wang, T. Lee, I. Kretzschmar, D. Routenberg, and M.A. Reed, "Self-Assembled Monolayer Molecular Devices," IEEE IEDM Technical Digest, 531-532, (2004).
  35. T. Lee, W. Wang, J. F. Klemic, J. J. Zhang, J. Su, and M. A. Reed, "Comparison of Electronic Transport Characterization Methods for Alkanethiol Self-Assembled Monolayers," Journal of Physical Chemistry B, 108, 8742 (2004).
  36. W. Wang, T. Lee, I. kretzschmar, and M. A. Reed, "Inelastic Electron Tunneling through Alkanedithiol Self-Assembled Monolayers," Nano Letters, 4, 643 (2004).
  37. W. Wang, T. Lee, and M. A. Reed, "Electron Conduction Mechanism in Self-Assembled Alkanethiol Monolayer Devices," Physical Review B, 68, 035416 (2003).
  38. W. Wang, T. Lee, and M. A. Reed, "Electronic Transport in Self-Assembled Alkanethiol Monolayers," Physica E, 19, 117 (2003).
  39. W. Wang, T. Lee, M. Kamdar, M. A. Reed, M. P. Steward, J. J. Huang, and J. M. Tour, "Electrical Characterization of Metal-Molecule-Silicon Junctions,?Superlattices and Microstructures, 33, 217 (2003).
  40. J. Chen, J. Su, W. Wang, and M. A. Reed, "Electronic Memory Effects in Self-Assembled Monolayer Systems,?Physica E, 16, 17 (2003).
  41. J. M. Tour, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar, S. M. Dirk, D. W. Price, M. A. Reed, C. Zhou, J. Chen, W. Wang, and I. Campbell, "Synthesis and Preliminary Testing of Molecular Wires and Devices," Chemistry - A European Journal, 23, 7 (2001).
  42. J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, "Room-temperature Negative Differential Resistance in Nanoscale Molecular Junctions," Applied Physics Letters, 77, 1224 (2000).
  43. H. A. Peng, W. Wang, C. Ju, and Z. He, "Double Diffractive Dissociation Process p + p -> Xp + Xp + p+ + p- at High Energy and the Pomeron Model of Donnachie-Landshoff," Communications in Theoretical Physics, 30, 229 (1998).

Book chapters:

  1. W. Wang, T. Lee, and M. A. Reed, "Electrical Characterization of Self-Assembled Monolayers," in CRC Nano and Molecular Electronics Handbook, edited by S. E. Lyshevski, CRC Press, Tylor and Francis Group, Boca Raton, 2007.
  2. W. Wang, T. Lee, and M. A. Reed, "Electronic Transport through Self-Assembled Monolayers," in Nanoscale Assembly: chemical techniques, edited by W. T. S. Huck, Springer Science, New York, 2005.
  3. W. Wang, T. Lee, and M. A. Reed, "Intrinsic Electronic Conduction Mechanism in Self-Assembled Monolayers," in Introducing Molecular Electronics, Springer Lecture Notes in Physics Series, edited by G. Cuniberti, G. Fagas, and K. Richter, Springer-Verlag, Heidelberg, 2005.

Conference proceedings:

  1. C. A. Richter, H. D. Xiong, X. Zhu, W. Wang, V. M. Stanford, D. E. Ioannou, and Q. Li, W. Hong, and T. Lee "Measurements for the reliability and electrical characterization of semiconductor nanowires" IEEE International Reliability Physics Symposium Proceeding, in press.
  2. W. Wang and C. A. Richter. "Magnetic tunnel junctions with self-assembled molecules" Journal of Nanoscience and Nanotechnology, in press.
  3. H. Xiong, W. Wang, Q. Li, J. S. Suehle, C. A. Richter, W. Hong, T. Lee, and D. M. Fleetwood, "Random Telegraph Signals and 1/f noise in ZnO Nanowire Field Effect Transistors" Proceedings of the 7th IEEE International Conference on Nanotechnology, 2007.
  4. W. Wang and C. A. Richter. "Investigating Molecular Spintronic devices" 2007 International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, AIP Conference Proceedings, September, 2007.
  5. J. Chen, T. Lee, J. Su, W. Wang, and M. A. Reed, "Molecular Electronic Devices" Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa, American Scientific Publishers, 2004.
  6. W. Wang, T. Lee, M. Kamdar, M. A. Reed, M. P. Steward, J. J. Huang, and J. M. Tour, "Electrical Characterization of Metal-Molecule-Silicon Junctions" Ann. N. Y. Acad. Sci. 1006, 36 (2003).
  7. T. Lee, W. Wang, M. A. Reed, "Electron Conduction Mechanism In Self-Assembled Alkanethiol Monolayer Devices" Ann. N. Y. Acad. Sci. 1006, 21 (2003).
  8. J. Chen, W. Wang, J. Klemic, M. A. Reed, B. W. Axelrod, D. M. Kaschak, A. M. Rawlett, D. W. Price, S. M. Dirk, J. M. Tour, D. S. Grubisha, and D. W. Bennett, "Molecular Wires, Switches, and Memories" Ann. N. Y. Acad. Sci. 960, 69 (2002).
  9. J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, "Room Temperature NDR in Nanoscale Molecular Junctions" Mat. Res. Soc. Symp. Proc. Vol. 582 (2001).
  10. D.W. Price, S. M. Dirk, A. M. Rawlett, J. Chen, W. Wang, M. A. Reed, A. G. Zacarias, J. M. Seminario and J. M. Tour, "Electrochemical Testing of Potential Molecular Devices" Mat. Res. Soc. Symp. Proc. Vol. 660 (2001).


BACK