University of Wyoming Physics & Astronomy Colloquium Series

Fridays -- 4:10 PM -- Prowse Room 234

Pre-Colloquium tea served at 3:45 in the Prowse Room

Fall 2016 & Spring 2017 Schedule

First Friday in Fall Semester is September 2
September 23 Properties of exoplanets and systems with Kepler
Jason Steffen (UNLV)

NASA's Kepler mission has revolutionized the field of exoplanets and its discoveries give new insights into our theories of planet formation and dynamical evolution. With over 4000 planet candidates and 1000 confirmed planets, the variety of systems and planets shows the breadth of properties that planet formation models must encompass. I present some of the landmark results of the Kepler mission, especially relating to the planet masses and orbital architectures of the planetary systems. I discuss how these results affect our understanding of the solar system and of planets in general.

September 30 Measuring the Universe with the Dark Energy Spectroscopic Instrument
Stephen Bailey (LBL)

The Dark Energy Spectroscopic Instrument (DESI) will perform a spectroscopic redshift survey of ~30 million galaxies and quasars at the Kitt Peak National Observatory 4-m Mayall telescope from 2019-2024. These include 4M luminous red galaxies, 17M emission line galaxies, and 2.4M quasars with 0.7M Lyman-alpha forest lines-of-sight. These enable DESI to map the expansion history of the universe to redshift 3 with unprecedented accuracy using the baryon acoustic oscillation method. During bright time, DESI will observe an additional 10M nearby galaxies and 10M stars. I will describe the science reach of DESI, the new spectrographs fed by 5000 robotically positioned fiber optics, and the data systems for target selection, survey planning, simulations, and processing the data. While building off the heritage of previous galaxy redshift surveys, DESI is upgrading all aspects of the pipelines and algorithms to maximize the science reach of the new instrument and survey.

Mon, October 10 Joint Astronomy/Geology Colloquium; Geology 216 at 3:10PM (NOTE day/time/room change)

The Diversity and Demographics of Distant Rocky Worlds
Leslie Rogers (University of Chicago)

The discovery of exoplanets (planets outside our Solar System) has brought the settings of many science fiction stories within reach of scientific inquiry. Astronomers' ever increasing sensitivity to smaller and smaller planets has opened the opportunity for empirical insights into the nature and demographics of distant terrestrial worlds. Up to what size and mass do planets typically have rocky compositions? How Earth-like are these distant rocky worlds? How common are rocky planets in the Habitable Zones of their host stars? In this talk, I will present the current constraints on each of these questions, appealing both to individual planet case studies and to planet population statistics.

October 28 Women in Physics & Astronomy Tea

Join us for a discussion of the status of women in physics & astronomy!

November 4 Simulating Plasma in Diverse Environments: Relativistic Jets, Black Hole Accretion, Re-Entry Black Out and Plasma Opening Switches
Kris Beckwith (Tech-X Corporation)

Computational models of ionized plasmas play a crucial role in understanding the dynamics of a diverse range of systems. Simulation has provided crucial insights into black hole astrophysics, where the interaction of the plasma with the black hole event horizon form relativistic jets that can be observed on galactic scales and black hole accretion, where emergent phenomena in magnetized turbulence gives rise to variability that can be measured using space-based telescopes. Closer to Earth, first-principles computational study of the physics blackout during spacecraft re-entry has provided opportunities to design mitigation devices, while plasma switches for pulsed power applications present opportunities for novel multiscale approaches. In this talk I will highlight results that have been obtained through numerical simulation across this range of fields and describe an effort to develop a fluid-plasma-electromagnetic modelling tool, experimentally validated for re-entry simulation with capabilities for modeling high energy density plasmas. As part of the discussion, I will highlight how these different research paths can be used to build a research career outside of academia.

November 18 The Milky Way Project: Citizen Scientists Map Our Home Galaxy
Matthew Povich (Cal. Poly Pomona)

I will tell the history of the Milky Way Project (MWP), which first launched in December 2010 as one of the original ten Zooniverse ( online citizen science programs, and present the results. Tens of thousands of internet users from around the globe have participated in the MWP over the past six years. Using an intuitive set of drawing tools on the MWP website (, these MWP volunteers make simple drawings and markings on Galactic survey images from the Spitzer Space Telescope to classify various types of astronomical objects. The first MWP data release presented a catalog of more than 5,000 infrared "bubbles" and identified a new class of objects called "yellowballs." The majority of bubbles are H II regions, while the yellowballs are thought to be either proto-bubbles or lower-luminosity star-forming regions. The large catalog of bubbles has enabled statistical studies of the prevalence of triggered star formation in our Galaxy. We are currently working on the second data release of MWP, which will analyze over 3 million classifications to produce an improved bubbles catalog and the first-ever citizen-science catalog of stellar-wind bow shock candidates. The most recent version of MWP, launched on September 15, 2016, has already provided >400,000 classifications and identified numerous new bow shock candidates that were not included in the recently-published catalog of 709 bow shock candidates identified by UW and Cal Poly Pomona astronomers.

Thur, December 1, 4pm at PS 234 Non-Equilibrium Control of Charge and Spin Motion in QUantum Materials
Hermann Durr (University of Stanford/SLAC)

Understanding the ultrafast interplay between charge, magnetic and lattice degrees of freedom is central to gaining control of condensed matter phenomena as diverse as insulator-metal transitions [1] and magnetic switching [2-4]. While generally accepted for strongly correlated oxides, the coupling of magnetism with lattice degrees of freedom is not well established for metallic magnetic materials. Especially for non-equilibrium processes leading to laser assisted magnetic switching coupling to phonons is often neglected. Femtosecond soft x-ray pulses from the Linac Coherent Light Source, offer the unique opportunity to image in real time the ultrafast electron and spin dynamics that leads to magnetization reversal [4] and turns insulators into metals [1]. Hard x-rays and fs electron pulses [5] enable first glimpses at the laser-induced lattice motion revealing unexpected electron-lattice coupling. Understanding and ultimately engineering the evolving electron, spin and lattice motion on the time- and lengthscales associated with the relevant interactions promises new ways for storing and processing of information.
[1] S. de Jong et al., Nature Materials 12, 882 (2013).
[2] I. Radu, et al., Nature 472, 206 (2011).
[3] C.-H. Lambert, et al., Science 345, 1337 (2014)
[4] C. E. Graves, et al., Nature Materials, 12, 293 (2013)
[5] T. Chase, et al., Appl. Phys. Lett. 108, 041909 (2016).

Final Friday in Fall Semester is December 9
First Friday in Spring Semester is January 27
January 27 Title, TBD
Brian Jackson (Boise State)

Abstract, TBD

February 10 Title, TBD
Shuo Chen (University of Houston)

Abstract, TBD

February 24 The 14-billion Year History of the Universe Leading to Modern Materials Science
Joe Greene (UIUC, Linköping, NTU)

Abstract is available here

March 3 Title, TBD
Zach Berta-Thompson (CU Boulder)

Abstract, TBD

May 5 Title, TBD
Matt Greenhouse (NASA)

Abstract, TBD

Final Friday in Spring Semester is May 5

Previous colloquia series: Fall 2002 Spring 2003 Fall 2003 Spring 2004 Fall 2004 Spring 2005 Fall 2005 Spring 2006 Fall 2006 Spring 2007 Fall 2007 Spring 2008
2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015-16
Contact for program information: Adam Myers